【題目】如圖,ABC中,∠C90°,點(diǎn)DAC上一點(diǎn),∠ABD2BAC45°,若AD12,則ABD的面積為____

【答案】36

【解析】

DEDBABE,EF垂直ACF,則∠DEB=90°-ABD=45°,證出AE=DE=DB,通過證明AEFBCD,得出BC==AF=AD=6,由三角形面積公式即可得出答案.

DEDBABE,EF垂直ACF,如圖所示:

則∠DEB=90°-ABD=45°,

∴△BDE是等腰直角三角形,

DB=DE,

∵∠ABD=2BAC=45°

∴∠BAC=22.5°,

∴∠ADE=DEB-BAC=22.5°=BAC

AE=DE=DB,

∵∠AFE=90°

FAD中點(diǎn),AF=FD,

又∵∠C=90°,

∴∠CBD=90°-45°-22.5°=22.5°

RtAEFRtBCD

RtAEFRtBCDAAS),

AF=BC=AD=6,

∴△ABD的面積S=AD×BC=×12×6=36

故答案為:36

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠計(jì)劃生產(chǎn)甲、乙兩種產(chǎn)品共2500噸,每生產(chǎn)1噸甲產(chǎn)品可獲得利潤0.3萬元,每生產(chǎn)1噸乙產(chǎn)品可獲得利潤0.4萬元.設(shè)該工廠生產(chǎn)了甲產(chǎn)品x(噸),生產(chǎn)甲、乙兩種產(chǎn)品獲得的總利潤為y(萬元).

1)求yx之間的函數(shù)表達(dá)式;

2)若每生產(chǎn)1噸甲產(chǎn)品需要A原料0.25噸,每生產(chǎn)1噸乙產(chǎn)品需要A原料0.5噸.受市場影響,該廠能獲得的A原料至多為1000噸,其它原料充足.求出該工廠生產(chǎn)甲、乙兩種產(chǎn)品各為多少噸時(shí),能獲得最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,DEBC,點(diǎn)F在邊AC上,DFBE相交于點(diǎn)G,且∠EDF=ABE.

求證:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明放學(xué)騎車回家過程中,離校的路程s與時(shí)間t的關(guān)系如圖,其中小明先以平時(shí)回家的速度騎車,中間因事停留片刻,因此加快速度,請根據(jù)圖象回答下列問題:

開始10分鐘內(nèi)的速度是多少?

若小明在停留后速度每分鐘加快100米,求a的值和小明平時(shí)回家所需的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電腦經(jīng)銷商計(jì)劃購進(jìn)一批電腦機(jī)箱和液晶顯示器,若購電腦機(jī)箱10臺(tái)和液液晶顯示器8臺(tái),共需要資金7000元;若購進(jìn)電腦機(jī)箱2臺(tái)和液示器5臺(tái),共需要資金4120元.

1)每臺(tái)電腦機(jī)箱、液晶顯示器的進(jìn)價(jià)各是多少元?

2)該經(jīng)銷商購進(jìn)這兩種商品共50臺(tái),而可用于購買這兩種商品的資金不超過22240元.根據(jù)市場行情,銷售電腦機(jī)箱、液晶顯示器一臺(tái)分別可獲利10元和160元.該經(jīng)銷商希望銷售完這兩種商品,所獲利潤不少于4100元.試問:該經(jīng)銷商有哪幾種進(jìn)貨方案?哪種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DEBCD,交ABE,FDE上,且AF=CE=AE

1)說明四邊形ACEF是平行四邊形;

2)當(dāng)∠B滿足什么條件時(shí),四邊形ACEF是菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程mx2﹣(2m﹣2)x+m=0有實(shí)根.

(1)m的取值范圍;

(2)若原方程兩個(gè)實(shí)數(shù)根為x1,x2,是否存在實(shí)數(shù)m,使得=1?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,直線y=2kx-2k (k>0)y軸于點(diǎn)B,與直線y=kx交于點(diǎn)A

1)求點(diǎn)A的橫坐標(biāo);

2)直接寫出x的取值范圍;

3)若P(0,3)PA+OA的最小值,并求此時(shí)k的值;

4)若C(02)A,B,C,D為頂點(diǎn)的四邊形是以BC為一條邊的菱形,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC交⊙O于點(diǎn)D,E的中點(diǎn),AEBC交于點(diǎn)F,C=2EAB.

(1)求證:AC是⊙O的切線;

(2)已知CD=4,CA=6,

①求CB的長;

②求DF的長.

查看答案和解析>>

同步練習(xí)冊答案