【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,∠ABC=60°,點(diǎn)E是AB的中點(diǎn),連接CE、OE,若AB=2BC,下列結(jié)論:①∠ACD=30°;②當(dāng)BC=4時(shí),BD=;③CD=4OE;④S△COE=S四邊形ABCD.其中正確的個(gè)數(shù)有( )
A.1B.2C.3D.4
【答案】C
【解析】
根據(jù)∠ABC=60°,點(diǎn)E是AB的中點(diǎn),且AB=2BC判斷出是等邊三角形,從而得出,判斷①;
過點(diǎn)B作交DC于H,計(jì)算長(zhǎng)度,再根據(jù)勾股定理計(jì)算判斷②;
根據(jù)E,O分別為AB,BD的中點(diǎn)利用中位線定理和AB=2BC判斷③;
通過中位線定理得出相似以及線段等量關(guān)系從而得出面積的關(guān)系判斷④.
∵∠ABC=60°,點(diǎn)E是AB的中點(diǎn),且AB=2BC
∴
∴是等邊三角形,
∴
∴ ,①正確;
過點(diǎn)B作交DC于H如圖:
∵BC=4,
∴
∴ ,②正確;
∵E,O分別為AB,BD的中點(diǎn)
∴
又∵
∴,③正確;
∵OE為三角形ABC的中位線
∴
∴
設(shè)三角形EOM的面積為S,則三角形MOC面積為2S,三角形MBC面積為4S,三角形EMB面積為2S
∴三角形ABC面積為12S
∴平行四邊形ABCD面積為24S
∴S△COE=S四邊形ABCD, ④錯(cuò)誤
故答案選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,B和D的距離分別為1,2,.△ADP沿點(diǎn)A旋轉(zhuǎn)至△ABP′,連接PP′,并延長(zhǎng)AP與BC相交于點(diǎn)Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)小聰是個(gè)數(shù)學(xué)愛好者,他發(fā)現(xiàn)從1開始,連續(xù)幾個(gè)奇數(shù)相加,和的變化規(guī)律如右表所示:
加數(shù)個(gè)數(shù) | 連續(xù)奇數(shù)的和S |
1 | 1= |
2 | 1+3=22 |
3 | 1+3+5=32 |
4 | 1+3+5+7=42 |
5 | 1+3+5+7+9=52 |
n | … |
(1)如果n=7,則S的值為 ;
(2)求1+3+5+7+…+199的值;
(3)求13+15+17+…+79的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)D在線段BC的延長(zhǎng)線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB⊥AC,AB=3cm,BC=5cm.點(diǎn)P從A點(diǎn)出發(fā)沿AD方向勻速運(yùn)動(dòng),速度為1cm/s.連結(jié)PO并延長(zhǎng)交BC于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<5).
(1)當(dāng)t為何值時(shí),四邊形ABQP是平行四邊形?
(2)設(shè)四邊形OQCD的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使點(diǎn)O在線段AP的垂直平分線上?若存在,求出t的值;若不存在,請(qǐng)說明理由.
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一動(dòng)點(diǎn)從半徑為2的⊙O上的A0點(diǎn)出發(fā),沿著射線A0O方向運(yùn)動(dòng)到⊙O上的點(diǎn)A1處,再向左沿著與射線A1O夾角為60°的方向運(yùn)動(dòng)到⊙O上的點(diǎn)A2處;接著又從A2點(diǎn)出發(fā),沿著射線A2O方向運(yùn)動(dòng)到⊙O上的點(diǎn)A3處,再向左沿著與射線A3O夾角為60°的方向運(yùn)動(dòng)到⊙O上的點(diǎn)A4處;…按此規(guī)律運(yùn)動(dòng)到點(diǎn)A2018處,則點(diǎn)A2018與點(diǎn)A0間的距離是( 。
A. 0 B. 2 C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空完成下列推理過程
已知:如圖,BD⊥AC,EF⊥AC,點(diǎn)D、F分別是垂足,∠1=∠4.
試說明:∠ADG=∠C
解:∵BD⊥AC,EF⊥AC(已知)
∴∠2=90°∠3=90°(垂直的定義)
∴∠2=∠3(等量代換)
∴BD∥EF
∴∠4=∠5(兩直線平行同位角相等)
∵∠1=∠4(已知)
∠1=∠5
∴DG∥CB(內(nèi)錯(cuò)角相等兩直線平行)
∴∠ADG=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB∥CD.
(1)如圖①,若∠ABE=30°,∠BEC=148°,求∠ECD的度數(shù);
(2)如圖②,若CF∥EB,CF平分∠ECD,試探究∠ECD與∠ABE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保護(hù)環(huán)境,我市公交公司計(jì)劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計(jì)在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?
(3)在(2)的條件下,哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少萬元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com