【題目】八年級(jí)(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測(cè)試中的數(shù)據(jù)分析”后,利用課外活動(dòng)時(shí)間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長(zhǎng)跑、鉛球中選一項(xiàng)進(jìn)行訓(xùn)練,訓(xùn)練后都進(jìn)行了測(cè)試.現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時(shí)定點(diǎn)投籃測(cè)試成績(jī)整理后作出如下統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)上面提供的信息回答下列問(wèn)題:
(1)扇形圖中跳繩部分的扇形圓心角為度,該班共有學(xué)生人,訓(xùn)練后籃球定時(shí)定點(diǎn)投籃平均每個(gè)人的進(jìn)球數(shù)是 .
(2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進(jìn)行測(cè)試,請(qǐng)用列表或畫(huà)樹(shù)形圖的方法求恰好選中兩名男生的概率.
【答案】
(1)36;40;5
(2)解:三名男生分別用A1,A2,A3表示,一名女生用B表示.根據(jù)題意,可畫(huà)樹(shù)形圖如下:
由上圖可知,共有12種等可能的結(jié)果,選中兩名學(xué)生恰好是兩名男生(記為事件M)的結(jié)果有6種,
∴P(M)= = .
【解析】解:(1)扇形圖中跳繩部分的扇形圓心角為360°×(1﹣50%﹣20%﹣10%﹣10%)=36度; 該班共有學(xué)生(2+5+7+4+1+1)÷50%=40人;
訓(xùn)練后籃球定時(shí)定點(diǎn)投籃平均每個(gè)人的進(jìn)球數(shù)是 =5,
故答案為:36,40,5.
(1)跳繩部分的圓心角的度數(shù)用周角乘以跳繩部分所占的百分比即可;總?cè)藬?shù)用用籃球的總?cè)藬?shù)除以其所占的百分比即可求得總?cè)藬?shù);(2)列樹(shù)狀圖將所有等可能的結(jié)果列舉出來(lái)后利用概率公式求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知相交直線(xiàn)AB和CD及另一直線(xiàn)MN,如果要在MN上找出與AB,CD距離相等的點(diǎn),則這樣的點(diǎn)至少有_____個(gè),最多有_____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)為直線(xiàn)AB、CD之間的一點(diǎn).
如圖1,若,則 ______ ;
如圖2,若,則 ______ ;
如圖3,若,則、與之間有什么等量關(guān)系?請(qǐng)猜想證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°
(1) 求證:四邊形ABCD是矩形
(2) 若DE⊥AC交BC于E,∠ADB∶∠CDB=2∶3,則∠BDE的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB和直線(xiàn)CD,直線(xiàn)BE和直線(xiàn)CF都被直線(xiàn)BC所截,在下面三個(gè)式子只,請(qǐng)你選擇其中兩個(gè)作為題設(shè),剩下的一個(gè)作為結(jié)論,組成一個(gè)真命題并寫(xiě)出對(duì)應(yīng)的推理過(guò)程
題設(shè)已知;______
結(jié)論求證:______
理由:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是BC的中點(diǎn),BE=,AD=.
(1)求線(xiàn)段BC、AB的長(zhǎng);
(2)求線(xiàn)段AC的長(zhǎng);
(3)求線(xiàn)段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)y= x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線(xiàn)y=ax2+bx+c的對(duì)稱(chēng)軸是x=﹣ 且經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)①直接寫(xiě)出點(diǎn)B的坐標(biāo);②求拋物線(xiàn)解析式.
(2)若點(diǎn)P為直線(xiàn)AC上方的拋物線(xiàn)上的一點(diǎn),連接PA,PC.求△PAC的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).
(3)拋物線(xiàn)上是否存在點(diǎn)M,過(guò)點(diǎn)M作MN垂直x軸于點(diǎn)N,使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與△ABC相似?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線(xiàn)段AB、OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),PC+PD值最小時(shí)點(diǎn)P的坐標(biāo)為( )
A.(﹣3,0) B.(﹣6,0) C.(,0) D.(,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家(記為A)、他上學(xué)的學(xué)校(記為B)、書(shū)店(記為C)依次坐落在一條東西走向的大街上,小明家位于學(xué)校西邊250米處,書(shū)店位于學(xué)校東邊100米處,小明中午放學(xué)后,到書(shū)店買(mǎi)本輔導(dǎo)書(shū),然后回家吃中午飯,下午直接去學(xué)校上課.
(1)試用數(shù)軸表示出小明家(A)、學(xué)校(B)、書(shū)店(C)的位置;
(2)計(jì)算出小明家與書(shū)店的距離;
(3)小明從中午放學(xué)離校到下午上學(xué)到校一共走了多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com