【題目】如圖,老王開車從A到D,全程共72千米.其中AB段為平地,車速是30千米/小時,BC段為上山路,車速是22.5千米/小時,CD段為下山路,車速是36千米/小時,已知下山路是上山路的2倍.
(1)若AB=6千米,老王開車從A到D共需多少時間?
(2)當(dāng)BC的長度在一定范圍內(nèi)變化時,老王開車從A到D所需時間是否會改變?為什么?(給出計(jì)算過程)
【答案】(1)2.4小時;(2)從A到D所需時間不變,2.4(小時).
【解析】
(1)根據(jù)AB=6千米,全程共72千米,下山路是上山路的2倍可得出BC=22千米,CD=44千米,進(jìn)而表示出時間,得出答案即可;
(2)根據(jù)(1)中思路得出設(shè)BC=d千米,則CD=2d千米,AB=(72-3d)千米,進(jìn)而表示出時間求出即可.
(1)若AB=6千米,則BC=22千米,CD=44千米,從A到D所需時間為:
=2.4(小時);
(2)從A到D所需時間不變,(答案正確不回答不扣分)
設(shè)BC=d千米,則CD=2d千米,AB=(72﹣3d)千米,
t=
=
=2.4(小時).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七班派出名同學(xué)參加數(shù)學(xué)競賽,老師以分為基準(zhǔn),把分?jǐn)?shù)超過分的部分記為正數(shù),不足部分記為負(fù)數(shù).評分記錄如下:,,,,,,,,,,,.
這名同學(xué)中最高分和最低分各是多少?
超過基準(zhǔn)分的和低于基準(zhǔn)分的各有多少人?
這十二名同學(xué)的平均成績是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E,F分別是邊AB,CD的中點(diǎn),(1)求證:△CFB≌△AED;
(2)若∠ADB=90°,判斷四邊形BFDE的形狀,并說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有20筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過或不足的千克數(shù)分別用正、負(fù)數(shù)來表示,記錄如下:
(1)20筐白菜中,最重的一筐比最輕的一筐重多少千克?
(2)與標(biāo)準(zhǔn)重量比較,20筐白菜總計(jì)超過或不足多少千克?
(3)若白菜每千克售價26元,則出售這20筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求1+2+22+23+…+22016的值,可設(shè)S=1+2+22+23+…+22016 , 于是2S=2+22+23+…+22017 , 因此2S﹣S=22017﹣1,所以S=22017﹣1.我們把這種求和方法叫錯位相減法.仿照上述的思路方法,計(jì)算出1+5+52+53+…+52016的值為( )
A.52017﹣1
B.52016﹣1
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題:
(1)(-78) +(+5)+(+78) (2)(+23)+(-17)+(+6)+(-22)
(3)[45-(-+)×36]÷5 (4)99×(-36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題:如圖1,在△ABC中,DE∥BC分別交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明發(fā)現(xiàn),過點(diǎn)E作EF∥DC,交BC延長線于點(diǎn)F,構(gòu)造△BEF,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖2).
請回答:BC+DE的值為________
參考小明思考問題的方法,解決問題:
如圖3,已知ABCD和矩形ABEF,AC與DF交于點(diǎn)G,AC=BF=DF,求∠AGF的度數(shù)________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,則點(diǎn)A關(guān)于拋物線對稱軸的對稱點(diǎn)坐標(biāo)為( 。
A.(﹣3,7)
B.(﹣1,7)
C.(﹣4,10)
D.(0,10)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,∠BAC=90°,∠ABC=45°,點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合).以AD為邊作正方形ADEF,連接CF.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時.求證:CF+CD=BC;
(2)如圖2,當(dāng)點(diǎn)D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關(guān)系;
(3)如圖3,當(dāng)點(diǎn)D在線段BC的反向延長線上時,且點(diǎn)A,F(xiàn)分別在直線BC的兩側(cè),其他條件不變;
①請直接寫出CF,BC,CD三條線段之間的關(guān)系;
②若正方形ADEF的邊長為2,對角線AE,DF相交于點(diǎn)O,連接OC.求OC的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com