已知:△ABC中,O是BC邊上的一點(diǎn),且OA=OB=OC,∠B=30°,求:∠BAC與∠C的度數(shù).

解:如圖,
∵OA=OB=OC,∠B=30°,
∴∠OAB=∠B=30°,∠OAC=∠C,
∵∠C+∠OAB+∠B=180°,
即∠C+∠OAC+∠OAB+∠B=180°,
∴2∠C=120°,
即∠C=60°,
∴∠BAC=180°-60°-30°=90°. 
答:∠BAC的度數(shù)是90°;∠C的度數(shù)是60°.
分析:根據(jù)等腰三角形的性質(zhì),可得∠OAB=∠B=30°,∠OAC=∠C,根據(jù)三角形的內(nèi)角和定理,可得∠C+∠OAC+∠OAB+∠B=
180°,整理可得2∠C=120°,即可求出∠BAC與∠C的度數(shù).
點(diǎn)評(píng):本題主要考查了等腰三角形的性質(zhì)和三角形的內(nèi)角和定理,根據(jù)題意,正確畫出圖形,對(duì)于解答問題可起到很好的幫助作用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
3
4
,現(xiàn)將△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(45°<α<135°)得到△DCE,設(shè)直線DE與直線AB相交于點(diǎn)P,連接CP.
精英家教網(wǎng)
(1)當(dāng)CD⊥AB時(shí)(如圖1),求證:PC平分∠EPA;
(2)當(dāng)點(diǎn)P在邊AB上時(shí)(如圖2),求證:PE+PB=6;
(3)在△ABC旋轉(zhuǎn)過程中,連接BE,當(dāng)△BCE的面積為
25
4
3
時(shí),求∠BPE的度數(shù)及PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,已知在△ABC中,AD垂直平分BC,AC=EC,點(diǎn)B、D、C、E在同一直線上,則下列結(jié)論:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正確的個(gè)數(shù)有( 。﹤(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,有一個(gè)角為60°,S△ABC=10
3
,周長為20,則三邊長分別為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,點(diǎn)D、E分別是AB、AC上的點(diǎn),以AE為直徑的⊙O與過B點(diǎn)的⊙P精英家教網(wǎng)外切于點(diǎn)D,若AC和BC邊的長是關(guān)于x的方程x2-(AB+4)x+4AB+8=0的兩根,且25BC•sinA=9AB,
(1)求△ABC三邊的長;
(2)求證:BC是⊙P的切線;
(3)若⊙O的半徑為3,求⊙P的半徑.

查看答案和解析>>

同步練習(xí)冊答案