【題目】進入六月以來,西瓜出現(xiàn)熱賣.佳佳水果超市用760元購進甲、乙兩個品種的西瓜,銷售完共獲利360元,其進價和售價如表:

甲品種

乙品種

進價(元/千克)

1.6

1.4

售價(元/千克)

2.4

2

1)求佳佳水果超市購進甲、乙兩個品種的西瓜各多少千克?

2)由于銷售較好,該超市決定,按進價再購進甲,乙兩個品種西瓜,購進乙品種西瓜的重量不變,購進甲品種西瓜的重量是原來的2倍,甲品種西瓜按原價銷售,乙品種西瓜讓利銷售.若兩個品種的西瓜售完獲利不少于560元,問乙品種西瓜最低售價為多少元?

【答案】1300千克, 200千克;21.8/千克.

【解析】

1)設(shè)佳佳水果超市購進甲品種西瓜x千克,購進乙品種西瓜y千克,根據(jù)總價=單價×數(shù)量結(jié)合總利潤=每千克的利潤×數(shù)量,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;

2)設(shè)乙品種西瓜的售價為m/千克,根據(jù)總利潤=每千克的利潤×數(shù)量結(jié)合售完獲利不少于560元,即可得出關(guān)于m的一元一次不等式,解之取其中的最小值即可得出結(jié)論.

解:(1)設(shè)佳佳水果超市購進甲品種西瓜x千克,購進乙品種西瓜y千克,

依題意,得:,

解得:

答:佳佳水果超市購進甲品種西瓜300千克,購進乙品種西瓜200千克.

2)設(shè)乙品種西瓜的售價為m/千克,

依題意,得:300×2×2.41.6+200×m1.4≥560,

解得:m≥1.8

答:乙品種西瓜最低售價為1.8/千克.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我縣實施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,胡老師為了了解班級學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對某班部分學(xué)生進行了為期半個月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

1)本次調(diào)查中,胡老師一共調(diào)查了  名同學(xué),其中女生共有  ___名;

2)將上面的條形統(tǒng)計圖補充完整;

3)為了共同進步,胡老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進行一幫一互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線軸交于點,交軸于點,直線關(guān)于軸對稱,交軸于點,

1)求直線的解析式;

2)過點外作直線,過點作于點,點作于點 .求證:

3)如圖2,如果沿軸向右平移,邊交軸于點,點的延長線上的一點,且,軸交于點 ,在平移的過程中,的長度是否為定值,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,邊長為a的正方形中有一個邊長為b的小正方形,如圖2所示是由圖1中陰影部分拼成的一個正方形.

1)設(shè)圖1中陰影部分面積為S1,圖2中陰影部分面積為S2.請直接用含ab的代數(shù)式表示S1,S2;

2)請寫出上述過程所揭示的乘法公式;

3試利用這個公式計算:(2+1)(22+1)(24+1)(28+1+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某化工車間發(fā)生有害氣體泄漏,從泄漏開始到完全控制利用了,之后將對泄漏的有害氣體進行處理,線段表示氣體泄漏時車間內(nèi)檢測表顯示數(shù)據(jù)與時間() 之間的函數(shù)關(guān)系(), 反比例函數(shù)對應(yīng)曲線表示氣體泄漏控制后檢測表顯示數(shù)據(jù)與時間() 之間的函數(shù)關(guān)系().根據(jù)圖像解答下列問題:

(1)試求出檢測表在氣體泄漏之初顯示的數(shù)據(jù)(即點的縱坐標);

(2)求反比例函數(shù)的表達式, 并確定車間內(nèi)檢測表恢復(fù)到氣體泄漏之初數(shù)據(jù)時對應(yīng)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市開展的“陽光體育”跳繩活動中,為了了解中學(xué)生跳繩活動的開展情況,隨機抽查了全市八年級部分同學(xué)1分鐘跳繩的次數(shù),將抽查結(jié)果進行統(tǒng)計,并繪制兩個不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)本次共抽查了多少名學(xué)生?

(2)請補全頻數(shù)分布直方圖空缺部分,直接寫出扇形統(tǒng)計圖中跳繩次數(shù)范圍135≤x≤155所在扇形的圓心角度數(shù).

(3)若本次抽查中,跳繩次數(shù)在125次以上(含125次)為優(yōu)秀,請你估計全市8000名八年級學(xué)生中有多少名學(xué)生的成績?yōu)閮?yōu)秀?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是( )

A.角平分線上的點到這個角兩邊的距離相等

B.角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上

C.三角形三條角平分線的交點到三條邊的距離相等

D.以上均不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,DAB的中點,且∠ACD=∠B,若 AB=10,求AC的長.

【答案】5.

【解析】試題分析

由點DAB的中點,AB=10,易得AD=5;再由∠ACD=∠B,∠A=∠A,可證得

ACD∽△ABC,從而可得: ,由此得到AC2=ADAB=50即可解得AC的值.

試題解析

∵∠ACD=∠B,∠A=∠A,

∴△ACD∽△ABC

,

AC2=ADAB.

∵DAB的中點,AB=10

AD=AB=5,

∴AC2=50

解得AC=.

型】解答
結(jié)束】
22

【題目】口袋中裝有四個大小完全相同的小球,把它們分別標號1,2,3,4,從中隨機摸出一個球,記下數(shù)字后放回,再從中隨機摸出一個球,利用樹狀圖或者表格求出兩次摸到的小球數(shù)和等于4的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點A、B,與y軸交于點C,點O為坐標原點,點D為拋物線頂點,點E在拋物線上,點Fx軸上,四邊形OCEF為矩形,且OF=2,EF=3

1)求拋物線所對應(yīng)的函數(shù)解析式;

2)求ΔABC的面積。

查看答案和解析>>

同步練習(xí)冊答案