【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊AD BC上,頂點F,H在菱形ABCD的對角線BD上,若AB=6,∠A=120°,且DE=2,則FH=_______

【答案】

【解析】

根據(jù)菱形的性質(zhì)得到ADBC,得到∠GBF=EDH,可證明BGF≌△DEHAAS),得到BG=DE;連接GE,過點GGQ//AB,交AD于點P,過點EEQGQ,垂足為Q,證明四邊形ABGP為平行四邊形,得到AP=BG=2,∠GPE=120°,求得PE=2,∠EPQ=60°,進而求得PQ=1,QE=,運用勾股定理求得GE的長,從而可得FH的長.

∵四邊形EFGH是矩形,

EH=FG,EHFG,

∴∠GFH=EHF,

∵∠BFG=180°-GFH,∠DHE=180°-EHF,

∴∠BFG=DHE

∵四邊形ABCD是菱形,

ADBC

∴∠GBF=EDH,

∴△BGF≌△DEHAAS),

BG=DE

DE=2,

BG=2;

過點GGQ//AB,交AD于點P,過點EEQGQ,垂足為Q,如圖,

則四邊形ABGP是平行四邊形,

AP=BG=2,GP=AB=6,∠GPE=A=120°,

∴∠EPQ=60°,PE=AD-AP-DE=6-2-2=2

RtPQE , EPQ=60°,PE=2

∴∠QEP=30°

QP=1

RtGQE中,∠GQE=90°,GQ=GP+PQ=6+1=7,

∵四邊形EFGH是矩形,

FH=GE=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚祖國優(yōu)秀傳統(tǒng)文化,加強優(yōu)秀文化熏陶,提高學(xué)生的文化素養(yǎng)和道德素質(zhì),我縣某校舉行了“經(jīng)典啟迪人生,國學(xué)伴我成長”主題活動,學(xué)校統(tǒng)一印制獨具本校特色的國學(xué)教育校本教材,通過課堂教學(xué)和課外活動相結(jié)合的方式進行國學(xué)教育,為了解學(xué)生學(xué)習(xí)成果,現(xiàn)隨機抽取了部分同學(xué)的國學(xué)成績(x為整數(shù),總分100),繪制了如下尚不完整的統(tǒng)計圖表.調(diào)查結(jié)果扇形統(tǒng)計圖.

組別

成績分組(單位:分)

頻數(shù)

頻率

A

50≤x<60

40

010

B

60≤x<70

60

c

C

70≤x<80

a

020

D

80≤x<90

160

040

E

90≤x<100

60

015

合計

b

1

1)根據(jù)以上信息解答問題:(1)統(tǒng)計表中a=________b= ________,c=_______

2)扇形統(tǒng)計圖中,m的值為________,“D”所對應(yīng)的圓心角的度數(shù)是_______度;

3)若參加國學(xué)教育的同學(xué)共有2000人,請你估計成績在90分及以上的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,以BC的中點O為圓心的分別與AB,AC相切于DE兩點,則的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,在平面直角坐標(biāo)系中,拋物線軸交于點右),與軸交于點,且

1)求拋物線的解析式;

2)如圖2,點在第一象限拋物線上,連接,若,求點的坐標(biāo);

3)在(2)的條件下,如圖3,過點軸,線段經(jīng)過點,與拋物線交于點,連接、,點在線段上,連接,交于點,點上,連接,交于點,若,,,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtAOB中,∠ABO=30°BO=4,分別以OA、OB邊所在的直線建立平面直角坐標(biāo)系,D點為x軸正半軸上的一點,以OD為一邊在第一象限內(nèi)作等邊△ODE

1)如圖①當(dāng)E點恰好落在線段AB上時,求E點坐標(biāo);

2)若點D從原點出發(fā)沿x軸正方向移動,設(shè)點D到原點的距離為x,△ODE與△AOB重疊部分的面積為y,當(dāng)E點到達△AOB的外面,且點D在點B左側(cè)時,寫出yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

3)在(1)問的條件下,將△ODE在線段OB上向右平移如圖②,圖中是否存在一條與線段OO′始終相等的線段?如果存在,請直接指出這條線段;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E AB 上的一點,連接DE,過點AAFDE,垂直為F.圓O經(jīng)過點C ,D ,F,且與AD相交于點G

(1)求證,△AFG∽△DFC

(2)AB=3,BC=5,AE=1,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一個三角形一條邊上的高與這條邊的比值是35,那么稱這個三角形為“準(zhǔn)黃金”三角形,這條邊就叫做這個三角形的“金底”.

(概念感知)

1)如圖1,在中,,,,試判斷是否是“準(zhǔn)黃金”三角形,請說明理由.

(問題探究)

2)如圖2是“準(zhǔn)黃金”三角形,BC是“金底”,把沿BC翻折得到,連ABADBC的延長線于點E,若點C恰好是的重心,求的值.

(拓展提升)

3)如圖3,,且直線之間的距離為3,“準(zhǔn)黃金”的“金底”BC在直線上,點A在直線上.,若是鈍角,將繞點按順時針方向旋轉(zhuǎn)得到,線段于點D

①當(dāng)時,則_________;

②如圖4,當(dāng)點B落在直線上時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校教務(wù)處為了解九年級學(xué)生“居家學(xué)習(xí)”的學(xué)習(xí)能力,隨機抽取該年級部分學(xué)生,對他們的學(xué)習(xí)能力進行了統(tǒng)計,其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖(其中學(xué)習(xí)能力指數(shù)級別“1”級,代表學(xué)習(xí)能力很強;“2”級,代表學(xué)習(xí)能力較強;“3”級,代表學(xué)習(xí)能力一般;“4“級,代表學(xué)習(xí)能力較弱)請結(jié)合圖中相關(guān)數(shù)據(jù)回答問題.

1)本次抽查的學(xué)生人數(shù)   人,并將條形統(tǒng)計圖補充完整;

2)本次抽查學(xué)生“居家學(xué)習(xí)”能力指數(shù)級別的眾數(shù)為   級,中位數(shù)為   級.

3)已知學(xué)習(xí)能力很強的學(xué)生中只有1名女生,現(xiàn)從中隨機抽取兩人寫有關(guān)“居家學(xué)習(xí)”的報告,請用列表或畫樹狀圖的方法求所抽查的兩位學(xué)生中恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場甲、乙、丙三名業(yè)務(wù)員2018年前5個月的銷售額(單位:萬元)如下表:

月份

銷售額

人員

1

2

3

4

5

6

9

10

8

8

5

7

8

9

9

5

9

10

5

11

1)根據(jù)上表中的數(shù)據(jù),將下表補充完整:

統(tǒng)計值

數(shù)值

人員

平均數(shù)(萬元)

眾數(shù)(萬元)

中位數(shù)(萬元)

方差

8

8

1.76

7.6

8

2.24

8

5

2)甲、乙、丙三名業(yè)務(wù)員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案