【題目】如圖,拋物線y=(x+m)2+m與直線y=x相交于E,C兩點(diǎn)(點(diǎn)E在點(diǎn)C的左邊),拋物線與x軸交
于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).△ABC的外接圓⊙H與直線y=-x相交于點(diǎn)D.
⑴ 若拋物線與y軸交點(diǎn)坐標(biāo)為(0,2),求m的值;
⑵ 求證:⊙H與直線y=1相切;
⑶ 若DE=2EC,求⊙H的半徑.
【答案】(1)-2;(2)見解析;(3)3.
【解析】
(1)由拋物線y=(x+m)2+m與y軸的交點(diǎn)坐標(biāo)為(0,2),可得m2+m=2,又由拋物線與x軸有兩個交點(diǎn),即可得(x+m)2+m=0有兩個不相等的實(shí)數(shù)根,繼而求得答案;
(2)首先作直徑CM交弦AB于點(diǎn)G,連接HB,由拋物線y=(x+m)2+m,與直線y=-x相交于E,C兩點(diǎn)(點(diǎn)E在點(diǎn)C的左邊),可得(x+m)2+m=-x,繼而可證得點(diǎn)C是拋物線的頂點(diǎn),由拋物線與圓的對稱性得:CM垂直平分AB,可證得CM⊥直線y=1,然后設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別為x1,x2,則x1,x2是(x+m)2+m=x2+2mx+m2+m=0的兩根,可得x1+x2=-2m,x1x2=m2+m,再設(shè)⊙H的半徑為r,CG=-m,HG=-m-r,易證得點(diǎn)H到直線y=1的距離為:-m-r+1=2r-r=r,即可得⊙H與直線y=1相切;
(3)首先連接MD,由⊙H與直線y=1相切于點(diǎn)M,可得△CMN是等腰直角三角形,CM為直徑,易得DN=DC,則可求得EC的長,繼而求得答案.
⑴ ∵拋物線y=(x+m)2+m與y軸的交點(diǎn)坐標(biāo)為(0,2),
∴當(dāng)x=0時(shí),y=m2+m=2,解之,得,m1=-2,m2=1.
∵拋物線y=(x+m)2+m與x軸有兩個交點(diǎn),
∴方程x2+2mx+m2+m=0有不等的實(shí)數(shù)根,(2m)2-4(m2+m)>0,
∴m<0,∴m=-2.
⑵ 證明:作直徑CM交弦AB于點(diǎn)G,連接HB.
由拋物線y=(x+m)2+m與直線y=-x相交于點(diǎn)E,C兩點(diǎn),
可得(x+m)2+m=-x,
∴(x+m)2+m+x=0,(x+m)(x+m+1)=0.
∴x1=-m,x2=-m-1.
因?yàn)辄c(diǎn)E在點(diǎn)C的左邊,
所以E,C兩點(diǎn)的坐標(biāo)為E(-m-1,m+1),C(-m,m).
故點(diǎn)C是拋物線的頂點(diǎn).由拋物線和圓的對稱性知,CM垂直平分AB.
∴CM⊥直線y=1,
設(shè)A、B兩點(diǎn)的橫坐標(biāo)分別為x1,x2,則x1,x2是方程x2+2mx+m2+m=0的兩根.
∴x1+x2=-2m,x1x2=m2+m.
∴AB=x2-x1==2.
設(shè)⊙H的半徑為r,CG=-m,HG=m-r.在Rt△HGB中,HG=-m-r,HB=r,GB=.
∴(-m-r)2+()2=r2.r =.
因?yàn)?/span>HG=-m-r,
所以點(diǎn)H到直線y=1的距離為-m-r
所以,⊙H與直線y=1相切.
⑶ 連接MD,⊙H與直線y=1相切于點(diǎn)M,所以△CMN為等腰直角三角形,
∵CM為直徑,
∴∠CDM=90°,
∴DN=DC.由E(-m-1,m+1),C(-m,m)可得,EC=.
又∵DE=2EC,
∴CD=3CE=3,
∴CN=2CD=6,
∴CM=2r =6,
∴r =3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某愛心企業(yè)在政府的支持下投入資金,準(zhǔn)備修建一批室外簡易的足球場和籃球場,供市民免費(fèi)使用,修建1個足球場和1個籃球場共需8.5萬元,修建2個足球場和4個籃球場共需27萬元.
(1)求修建一個足球場和一個籃球場各需多少萬元?
(2)該企業(yè)預(yù)計(jì)修建這樣的足球場和籃球場共20個,投入資金不超過90萬元,求至少可以修建多少個足球場?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD內(nèi)接于⊙O,AC為⊙O的直徑,AC與BD交于點(diǎn)E,且AE=AB.
(1)DA=DB,求證:AB=CB;
(2)如圖2,△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)30°得到△FGC,點(diǎn)A經(jīng)過的路徑為,若AC=4,求圖中陰影部分面積S;
(3)在(2)的條件下,連接FB,求證:FB為⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在以AB為半徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線段AB上運(yùn)動,點(diǎn)E與點(diǎn)D
關(guān)AC對稱,DF⊥DE于點(diǎn)D,并交EC的延長線與點(diǎn)F.下列結(jié)論:①CE=CF;②線段EF的最小值為2
③當(dāng)AD=2時(shí),EF與半圓相切;④當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動到點(diǎn)B時(shí),線段EF掃過的面積是16.其中正
確的結(jié)論()
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)E在線段AC上,D在AB的延長線上,連接DE交BC于F,過E作EG⊥BC于G.
(1)下列兩個關(guān)系式:①DB=EC,②DF=EF,請你選擇一個做為條件,另一個做為結(jié)論構(gòu)成一個正確的命題,并給予證明.
你選擇的條件是 ,結(jié)論是 .(只需填序號)
(2)在(1)的條件下,求證:FG=BC/2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過A,B,C三點(diǎn).
(1)求拋物線的解析式。
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點(diǎn)P是拋物線上的動點(diǎn),點(diǎn)Q是直線上的動點(diǎn),判斷有幾個位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為直線x=1的拋物線經(jīng)過A(﹣1,0)、C(0,3)兩點(diǎn),與x軸的另一個交點(diǎn)為B,點(diǎn)D在y軸上,且OB=3OD
(1)求該拋物線的表達(dá)式;
(2)設(shè)該拋物線上的一個動點(diǎn)P的橫坐標(biāo)為t
①當(dāng)0<t<3時(shí),求四邊形CDBP的面積S與t的函數(shù)關(guān)系式,并求出S的最大值;
②點(diǎn)Q在直線BC上,若以CD為邊,點(diǎn)C、D、Q、P為頂點(diǎn)的四邊形是平行四邊形,請求出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD的一組對邊AD、BC的延長線交于點(diǎn)E.
(1)如圖①,若∠ABC=∠ADC=90°,求證:ED·EA=EC·EB;
(2)如圖②,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面積為6,求四邊形ABCD的面積;
(3)如圖③,另一組對邊AB、DC的延長線相交于點(diǎn)F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接寫出AD的長(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,點(diǎn)P、Q分別從B、C兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)P沿BC向終點(diǎn)C運(yùn)動,速度為1cm/s;點(diǎn)Q沿CA、AB向終點(diǎn)B運(yùn)動,速度為2cm/s,設(shè)它們運(yùn)動的時(shí)間為x(s).
(1)求x為何值時(shí),PQ⊥AC;
(2)設(shè)△PQD的面積為y(cm2),當(dāng)0<x<2時(shí),求y與x的函數(shù)關(guān)系式;
(3)當(dāng)0<x<2時(shí),求證:AD平分△PQD的面積;
(4)探索以PQ為直徑的圓與AC的位置關(guān)系,請寫出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫出過程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com