【題目】如圖,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)是,為拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),交直線于點(diǎn),拋物線的對(duì)稱(chēng)軸是直線.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)在第二象限內(nèi),且,求的面積.
(3)在(2)的條件下,若為直線上一點(diǎn),在軸的下方,是否存在點(diǎn),使是以為腰的等腰三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2);(3)存在,
【解析】
(1)由拋物線的對(duì)稱(chēng)性結(jié)合點(diǎn)A的坐標(biāo)可得點(diǎn),由此可設(shè)函數(shù)的表達(dá)式為:,繼而根據(jù)點(diǎn)C的坐標(biāo)即可求解;
(2)先求出BC的解析式,設(shè)點(diǎn),則OD=-x,點(diǎn),點(diǎn),表示出PE的長(zhǎng),繼而根據(jù)可得關(guān)于x的方程,解方程求得x的值后進(jìn)而可求得PE、BD的長(zhǎng),然后利用三角形面積公式進(jìn)行計(jì)算即可;
(3)根據(jù)題意,在x軸下方,是以為腰的等腰三角形,只存在:的情況,由此可得BM=BD=1,求出的值,繼而設(shè)M的坐標(biāo)為(xM,yM),利用解直角三角形的知識(shí)即可求得,進(jìn)而求出,由此即可得.
(1)點(diǎn)的坐標(biāo)是,拋物線的對(duì)稱(chēng)軸是直線,則點(diǎn),
所以設(shè)函數(shù)的表達(dá)式為:,
將點(diǎn)C(0,-2)代入得:,解得:,
故拋物線的表達(dá)式為:;
(2)設(shè)直線BC的解析式為y=mx+n,
將點(diǎn)(-4,0)、(0,-2)分別代入得,
解得:,
所以直線的表達(dá)式為:,
設(shè)點(diǎn),則OD=-x,點(diǎn),點(diǎn),
∴PE=,
∵,
∴=,
解得:或x=-5(舍去),
∴點(diǎn),
∴PE=,BD=-4-(-5)=1,
∴;
(3)由題意得:在x軸下方,是以為腰的等腰三角形,只存在:的情況,
∴BM=BD=1,
∵(-4,0)、(0,-2),
∴OB=4,OC=2,
∵∠BOC=90°,∴BC==,
∴ ,
設(shè)M的坐標(biāo)為(xM,yM),
則,
則,
故點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,點(diǎn)P在四邊形ABCD的邊上,若點(diǎn)P到BD的距離為,則點(diǎn)P的個(gè)數(shù)為____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知ABCD中,AB=16,AD=10,sinA=,點(diǎn)M為AB邊上一動(dòng)點(diǎn),過(guò)點(diǎn)M作MN⊥AB,交AD邊于點(diǎn)N,將∠A沿直線MN翻折,點(diǎn)A落在線段AB上的點(diǎn)E處,當(dāng)△CDE為直角三角形時(shí),AM的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣1(a≠0)交x軸于A,B(1,0)兩點(diǎn),交y軸于點(diǎn)C,一次函數(shù)y=x+3的圖象交坐標(biāo)軸于A,D兩點(diǎn),E為直線AD上一點(diǎn),作EF⊥x軸,交拋物線于點(diǎn)F
(1)求拋物線的解析式;
(2)若點(diǎn)F位于直線AD的下方,請(qǐng)問(wèn)線段EF是否有最大值?若有,求出最大值并求出點(diǎn)E的坐標(biāo);若沒(méi)有,請(qǐng)說(shuō)明理由;
(3)在平面直角坐標(biāo)系內(nèi)存在點(diǎn)G,使得G,E,D,C為頂點(diǎn)的四邊形為菱形,請(qǐng)直接寫(xiě)出點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)在軸上,點(diǎn)在軸上,將邊折疊,使點(diǎn)落在邊的點(diǎn)處.已知折疊,且.
(1)判斷與是否相似?請(qǐng)說(shuō)明理由;
(2)求直線與軸交點(diǎn)的坐標(biāo);
(3)是否存在過(guò)點(diǎn)的直線,使直線、直線與軸所圍成的三角形和直線、直線與軸所圍成的三角形相似?如果存在,請(qǐng)直接寫(xiě)出其解析式并畫(huà)出相應(yīng)的直線;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,為放置在水平桌面上的臺(tái)燈,底座的高為.長(zhǎng)度均為的連桿,與始終在同一水平面上.
(1)旋轉(zhuǎn)連桿,,使成平角,,如圖2,求連桿端點(diǎn)離桌面的高度.
(2)將(1)中的連桿繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使,如圖3,問(wèn)此時(shí)連桿端點(diǎn)離桌面的高度是增加了還是減少?增加或減少了多少?(精確到,參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱(chēng)軸為直線x=-1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正確的結(jié)論有( 。﹤(gè).
A. 3B. 4C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出
(1)如圖①,在等腰Rt△ABC中,斜邊AC=4,點(diǎn)D為AC上一點(diǎn),連接BD,則BD的最小值為 ;
問(wèn)題探究
(2)如圖②,在△ABC中,AB=AC=5,BC=6,點(diǎn)M是BC上一點(diǎn),且BM=4,點(diǎn)P是邊AB上一動(dòng)點(diǎn),連接PM,將△BPM沿PM翻折得到△DPM,點(diǎn)D與點(diǎn)B對(duì)應(yīng),連接AD,求AD的最小值;
問(wèn)題解決
(3)如圖③,四邊形ABCD是規(guī)劃中的休閑廣場(chǎng)示意圖,其中∠BAD=∠ADC=135°,∠DCB=30°,AD=2km,AB=3km,點(diǎn)M是BC上一點(diǎn),MC=4km.現(xiàn)計(jì)劃在四邊形ABCD內(nèi)選取一點(diǎn)P,把△DCP建成商業(yè)活動(dòng)區(qū),其余部分建成景觀綠化區(qū).為方便進(jìn)入商業(yè)區(qū),需修建小路BP、MP,從實(shí)用和美觀的角度,要求滿足∠PMB=∠ABP,且景觀綠化區(qū)面積足夠大,即△DCP區(qū)域面積盡可能。畡t在四邊形ABCD內(nèi)是否存在這樣的點(diǎn)P?若存在,請(qǐng)求出△DCP面積的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=6,M為AD上一點(diǎn),將△ABM沿BM翻折至△EBM,ME和BE分別與CD相交于O,F兩點(diǎn),且OE=OD,則AM的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com