【題目】如圖,在中,, 是邊上一動點(不與重合),=于點,,則線段的最大值為___

【答案】

【解析】

AGBCG,如圖,根據(jù)等腰三角形的性質(zhì)得BG=CG,再利用余弦的定義計算出BG=8,則BC=2BG=16,設(shè)BD=x,則CD=16-x,證明ABD∽△DCE,利用相似比可表示出,然后利用二次函數(shù)的性質(zhì)求CE的最大值.

AGBCG,如圖,

AB=AC,

BG=CG,

∵∠ADE=B=α,

cosB=cosα=

BG=×10=8,

BC=2BG=16,

設(shè)BD=x,則CD=16-x,

∵∠ADC=B+BAD,即α+CDE=B+BAD,

∴∠CDE=BAD,

而∠B=C

∴△ABD∽△DCE,

,即,

,

當(dāng)x=8時,CE最大,最大值為6.4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=,經(jīng)過點A1,3)、B0,1),過點Ax軸的平行線交拋物線于另一點C

1)求拋物線的表達式及其頂點坐標(biāo);

2)如圖,點GBC上方拋物線上的一個動點,分別過點GGHBC于點H、作GEx軸于點E,交BC于點F,在點G運動的過程中,GFH的周長是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,A(﹣32),B0,1),將線段AB沿x軸的正方向平移nn0)個單位,得到線段A,B恰好都落在反比例函數(shù)ym≠0)的圖象上.

1)用含n的代數(shù)式表示點A,B的坐標(biāo);

2)求n的值和反比例函數(shù)ym≠0)的表達式;

3)點C為反比例函數(shù)ym≠0)圖象上的一個動點,直線CAx軸交于點D,若CD2AD,請直接寫出點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的一邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.

1)如圖1,已知折痕與邊BC交于點O,連接AP、OPOA.求證:△OCP∽△PDA;

2)若圖1中△OCP與△PDA的面積比為14,求邊AB的長

3)如圖2,在(2)的條件下,擦去折痕AO、線段OP,連接BP,動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連接MN交與PBF,作MEBP于點E,試問當(dāng)點M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,點為線段外一動點,且,,填空:當(dāng)點位于__________時,線段的長取到最大值__________,且最大值為;(用含、的式子表示).

2)如圖2,若點為線段外一動點,且,,分別以,為邊,作等邊和等邊,連接,

①圖中與線段相等的線段是線段__________,并說明理由;

②直接寫出線段長的最大值為__________

3)如圖3,在平面直角坐標(biāo)系中,點的坐標(biāo)為,點的坐標(biāo)為,點為線段外一動點,且,,,請直接寫出線段長的最大值為__________,及此時點的坐標(biāo)為__________.(提示:等腰直角三角形的三邊長、、滿足

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進AB兩種鋼筆,若購進A種鋼筆2支,B種鋼筆3支,共需90元;購進A種鋼筆3支,B種鋼筆5支,共需145元.

1A、B兩種鋼筆每支各多少元?

2若該文具店要購進A,B兩種鋼筆共90支,總費用不超過1588元,并且A種鋼筆的數(shù)量少于B種鋼筆的數(shù)量,那么該文具店有哪幾種購買方案?

3文具店以每支30元的價格銷售B種鋼筆,很快銷售一空,于是,文具店決定在進價不變的基礎(chǔ)上再購進一批B種鋼筆,漲價賣出,經(jīng)統(tǒng)計,B種鋼筆售價為30元時,每月可賣68支;每漲價1元,每月將少賣4支,設(shè)文具店將新購進的B種鋼筆每支漲價a元(a為正整數(shù)),銷售這批鋼筆每月獲利W元,試求Wa之間的函數(shù)關(guān)系式,并且求出B種鉛筆銷售單價定為多少元時,每月獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,網(wǎng)格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的是格點三角形.在建立平面直角坐標(biāo)系后,點的坐標(biāo)為

1)把向下平移5格后得到,寫出點,,的坐標(biāo),并畫出;

2)把繞點按順時針方向旋轉(zhuǎn)后得到,寫出點,的坐標(biāo),并畫出;

3)把以點為位似中心放大得到,使放大前后對應(yīng)線段的比為,寫出點,的坐標(biāo),并畫出

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點CD⊙O上,∠A=2∠BCD,點EAB的延長線上,∠AED=∠ABC

1)求證:DE⊙O相切;

2)若BF=2,DF=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線yx2的圖象如圖所示.已知A點坐標(biāo)為(11),過點AAA1x軸交拋物線于點A1,過點A1A1A2OA交拋物線于點A2,過點A2A2A3x軸交拋物線于點A3,過點A3A3A4OA交拋物線于點A4……,依次進行下去,則點A2019的坐標(biāo)為_______

查看答案和解析>>

同步練習(xí)冊答案