【題目】某文具店購進A,B兩種鋼筆,若購進A種鋼筆2支,B種鋼筆3支,共需90元;購進A種鋼筆3支,B種鋼筆5支,共需145元.

1AB兩種鋼筆每支各多少元?

2若該文具店要購進AB兩種鋼筆共90支,總費用不超過1588元,并且A種鋼筆的數(shù)量少于B種鋼筆的數(shù)量,那么該文具店有哪幾種購買方案?

3文具店以每支30元的價格銷售B種鋼筆,很快銷售一空,于是,文具店決定在進價不變的基礎上再購進一批B種鋼筆,漲價賣出,經(jīng)統(tǒng)計,B種鋼筆售價為30元時,每月可賣68支;每漲價1元,每月將少賣4支,設文具店將新購進的B種鋼筆每支漲價a元(a為正整數(shù)),銷售這批鋼筆每月獲利W元,試求Wa之間的函數(shù)關系式,并且求出B種鉛筆銷售單價定為多少元時,每月獲利最大?最大利潤是多少元?

【答案】1A種鋼筆每只15 B種鋼筆每只20元;

2方案有兩種,一方案為:購進A種鋼筆43支,購進B種鋼筆為47支方案二:購進A種鋼筆44,購進B種鋼筆46支;

3定價為33元或34元,最大利潤是728.

【解析】(1)設A種鋼筆每只x元,B種鋼筆每支y元,

由題意得 ,

解得:

答:A種鋼筆每只15元,B種鋼筆每支20元;

(2)設購進A種鋼筆z支,

由題意得: ,

∴42.4≤z<45,

∵z是整數(shù)

z=43,44,

∴90-z=47,或46;

∴共有兩種方案:方案一:購進A種鋼筆43支,購進B種鋼筆47支,

方案二:購進A種鋼筆44只,購進B種鋼筆46只;

3W=30-20+a)(68-4a=-4a+28a+680=-4(a-)+729,

∵-4<0,∴W有最大值,∵a為正整數(shù),

∴當a=3,或a=4時,W最大,

W最大==-4×(3-)+729=72830+a=33,或34

答:B種鉛筆銷售單價定為33元或34元時,每月獲利最大,最大利潤是728元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】兩根木條,一根長20cm,另一根長24cm,將它們一端重合且放在同一條直線上,此時兩根木條的中點之間的距離為(  )

A. 2cm B. 4cm C. 2cm22cm D. 4cm44cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若代數(shù)式(4x2mx3y4)(8nx2x2y3)的值與字母x的取值無關,求代數(shù)式(m22mnn2)2(mn3m2)3(2n2mn)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C是線段AB上一點,M是線段AC的中點,N是線段BC的中點.

(1)如果AB=10cm,AM=3cm,求CN的長;

(2)如果MN=6cm,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)閱讀下面材料:

點A,B在數(shù)軸上分別表示實數(shù)a,b,A,B兩點之間的距離表示為|AB|.

當A,B兩點中有一點在原點時,不妨設點A在原點,如圖(1),|AB|=|OB|=|b|=|a﹣b|;當A,B兩點都不在原點時,

①如圖(2),點A,B都在原點的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;

②如圖(3),點A,B都在原點的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;

③如圖(4),點A,B在原點的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;

綜上,數(shù)軸上A,B兩點之間的距離|AB|=|a﹣b|.

(2)回答下列問題:

①數(shù)軸上表示2和5的兩點之間的距離是  ,數(shù)軸上表示﹣2和﹣5的兩點之間的距離是  ,數(shù)軸上表示1和﹣3的兩點之間的距離是  ;

②數(shù)軸上表示x和﹣1的兩點A和B之間的距離是  ,如果|AB|=2,那么x為  ;

③當代數(shù)式|x+1|+|x﹣2|取最小值時,相應的x的取值范圍是  

④解方程|x+1|+|x﹣2|=5.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是兩個可以自由轉動的轉盤,轉盤A被分成三個面積相等的扇形,轉盤B被分成兩個面積相等的扇形.

1轉動轉盤A一次,所得到的數(shù)字是負數(shù)的概率為_______________

2轉動兩個轉盤各一次,請用列表法或畫樹狀圖法求所得到的數(shù)字均是負數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】比較大。-3______-0.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個等腰三角形的兩邊長分別是3和7,則它的周長為(
A.17
B.15
C.13
D.13或17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為原點,點A(﹣2,0),點B(0,2),點E,點F分別為OA,OB的中點.若正方形OEDF繞點O順時針旋轉,得正方形OE′D′F′,記旋轉角為α.

1)如圖②,當α=135°時,求AE′,BF′的長;

2)如圖③,當0°﹤α﹤180°時, AE′BF′有什么位置關系;

3)若直線AE′與直線BF′相交于點P,求點P的縱坐標的最大值(直接寫出結果即可).

查看答案和解析>>

同步練習冊答案