【題目】如圖1 ,用籬笆靠墻圍成矩形花圃ABCD ,墻可利用的最大長度為15m,一面利用舊墻 ,其余三面用籬笆圍,籬笆總長為24m,設(shè)平行于墻的BC邊長為x m
(1)若圍成的花圃面積為40m2時(shí),求BC的長
(2)如圖2,若計(jì)劃在花圃中間用一道籬笆隔成兩個(gè)小矩形,且圍成的花圃面積為50m2,請(qǐng)你判斷能否成功圍成花圃,如果能,求BC的長?如果不能,請(qǐng)說明理由.
(3)如圖3,若計(jì)劃在花圃中間用n道籬笆隔成小矩形,且當(dāng)這些小矩形為正方形時(shí),請(qǐng)列出x、n滿足的關(guān)系式
【答案】(1)BC的長為4米 (2)不能圍成,理由見解析 (3)
【解析】
(1)由于籬笆總長為24m,設(shè)平行于墻的BC邊長為xm,由此得到AB=m,接著根據(jù)題意列出方程x=40,解方程即可求出BC的長;
(2)不能圍成花圃;根據(jù)(1)得到x=50,此方程的判別式△=(-24)2-4×150<0,由此得到方程無實(shí)數(shù)解,所以不能圍成花圃;
(3)由于在花圃中間用n道籬笆隔成小矩形,且這些小矩形為正方形,那么AB=,然后根據(jù)正方形的性質(zhì)即可求解.
(1)根據(jù)題意得,
AB=m
則x=40
∴x1=20,x2=4,
因?yàn)?/span>20>15,
所以x1=20舍去
答:BC的長為4米;
(2)不能圍成花圃,
根據(jù)題意得,x=50
方程可化為x2-24x+150=0
△=(-24)2-4×150<0,
∴方程無實(shí)數(shù)解,
∴不能圍成花圃;
(3)∵用n道籬笆隔成小矩形,且這些小矩形為正方形,
∴AB=
而正方形的邊長也為,
∴關(guān)系式為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射擊隊(duì)準(zhǔn)備從甲、乙兩名隊(duì)員中選取一名隊(duì)員代表該隊(duì)參加比賽,特為甲、乙兩名隊(duì)員舉行了一次選拔賽,要求這兩名隊(duì)員各射擊10次.比賽結(jié)束后,根據(jù)比賽成績情況,將甲、乙兩名隊(duì)員的比賽成績制成了如下的統(tǒng)計(jì)圖(表):
甲隊(duì)員的成績統(tǒng)計(jì)表
成績(單位:環(huán)) | 7 | 8 | 9 | 10 |
次數(shù)(單位:次) | 5 | 1 | 2 | 2 |
(1)在圖1中,求“8環(huán)”所在扇形的圓心角的度數(shù);
(2)經(jīng)過整理,得到的分析數(shù)據(jù)如表,求表中的a、b、c的值.
隊(duì)員 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 8 | 7.5 | 7 | c |
乙 | a | b | 7 | 1 |
(3)根據(jù)甲、乙兩名隊(duì)員的成績情況,該射擊隊(duì)準(zhǔn)備選派乙參加比賽,請(qǐng)你寫出一條射擊隊(duì)選派乙的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一邊是另一邊的倍的三角形叫做智慧三角形,這兩邊中較長邊稱為智慧邊,這兩邊的夾角叫做智慧角.
(1)已知為智慧三角形,且的一邊長為,則該智慧三角形的面積為_________;
(2)如圖①,在中,,,求證:是智慧三角形;
(3)如圖②,是智慧三角形,為智慧邊,為智慧角,,點(diǎn)在函數(shù)()的圖象上,點(diǎn)在點(diǎn)的上方,且點(diǎn)的縱坐標(biāo)為,當(dāng)是直角三角形時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長DE到點(diǎn)F,使得EF=BE,連接CF.
(1)求證:四邊形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖像與軸交于兩點(diǎn),與軸交于,對(duì)稱軸為直線,頂點(diǎn)為.
(1)求該二次函數(shù)的解析式;
(2)經(jīng)過、兩點(diǎn)的直線交拋物線的對(duì)稱軸于點(diǎn),點(diǎn)為直線上方拋物線上的一動(dòng)點(diǎn),當(dāng)點(diǎn)在什么位置時(shí),的面積最大?并求此時(shí)點(diǎn)的坐標(biāo)及的最大面積;
(3)如圖,平移拋物線,使拋物線的頂點(diǎn)在射線上移動(dòng),點(diǎn)平移后的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),連接、,是否能為等腰三角形?若能,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在平面直角坐標(biāo)系中,直線 與軸交于點(diǎn)A,與軸交于點(diǎn)B,拋物線經(jīng)過A、B兩點(diǎn),與軸的另一個(gè)交點(diǎn)為C.
(1)直接寫出點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)求拋物線的函數(shù)解析式;
(3)D為直線AB下方拋物線上一動(dòng)點(diǎn);
①連接DO交AB于點(diǎn)E,若DE:OE=3:4,求點(diǎn)D的坐標(biāo);
②是否存在點(diǎn)D,使得∠DBA的度數(shù)恰好是∠BAC度數(shù)2倍,如果存在,求點(diǎn)D 的坐標(biāo),如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形OABC的頂點(diǎn)A的坐標(biāo)為(5,0),頂點(diǎn)B、C都在第一象限,對(duì)角線AC、BO交于點(diǎn)D,雙曲線y=(x>0)經(jīng)過點(diǎn)D,且ACBO40,則k的值為( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織數(shù)學(xué)興趣探究活動(dòng),愛思考的小實(shí)同學(xué)在探究兩條直線的位置關(guān)系查閱資料時(shí)發(fā)現(xiàn),兩條中線互相垂直的三角形稱為“中垂三角形”.如圖1、圖2、圖3中,、是的中線,于點(diǎn),像這樣的三角形均稱為“中垂三角形”.
(特例探究)
(1)如圖1,當(dāng),時(shí),_____,______;
如圖2,當(dāng),時(shí),_____,______;
(歸納證明)
(2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想、、三者之間的關(guān)系,用等式表示出來,并利用圖3證明你的結(jié)論;
(拓展證明)
(3)如圖4,在中,,,、、分別是邊、的中點(diǎn),連結(jié)并延長至,使得,連結(jié),當(dāng)于點(diǎn)時(shí),求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com