【題目】如圖,∠AOB=120°OP平分∠AOB,且OP=2,若點M,N分別在OAOB上,且△PMN為等邊三角形,則滿足上述條件的△PMN有(

A.2B.3C.4D.無數(shù)個

【答案】D

【解析】

如圖在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要證明△PEM≌△PON即可推出△PMN是等邊三角形,由此即可得出結論.

如圖在OA、OB上截取OE=OF=OP,作∠MPN=60°

∴∠EOP=POF=60°,

OP=OE=OF

∴△OPE,△OPF是等邊三角形,

EP=OP,∠EPO=OEP=PON=MPN=60°,

∴∠EPO-OPM=MPN-OPM

∴∠EPM=OPN,

在△PEM和△PON中,

∴△PEM≌△PONASA.

PM=PN,

∵∠MPN=60°,

∴△POM是等邊三角形,

∴只要∠MPN=60°,△PMN就是等邊三角形,

故這樣的三角形有無數(shù)個.

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列的解答過程,然后再解答:

形如的化簡,只要我們找到兩個正數(shù)a、b,使a+bm,abn,使得,,那么便有:ab

例如:化簡

解:首先把化為,這里m7n12,由于4+37,4×312

=

1)填空:   ,   

2)化簡:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBECD都是等腰直角三角形,∠ACB=ECD=90°,DAB邊上一點,且AD=2,AC=BC=.

1)證明:ACE≌△BCD;

2)求四邊形ADCE的面積;

3)求ED的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形 ABCD 中,AB5AD13,點 E BC 上一點,將ABE沿 AE 折疊,使點 B 落在長方形內點 F 處,連接 DF DF12

1)試說明:ADF 是直角三角形;

2)求 BE 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菱形中,,點在邊上,點在邊上.

(1)如圖,若的中點,,求證:;

(2)如圖,若,求證:是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某單位750名職工積極參加向貧困地區(qū)學校捐書活動,為了解職工的捐數(shù)量,采用隨機抽樣的方法抽取30名職工作為樣本,對他們的捐書量進行統(tǒng)計,統(tǒng)計結果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計圖,由圖中給出的信息解答下列問題:

(1)補全條形統(tǒng)計圖;

(2)求這30名職工捐書本數(shù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)估計該單位750名職工共捐書多少本?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A(-1,0)、B(4,0)、C(0,2)三點.

(1)求該二次函數(shù)的解析式;

(2)點D是該二次函數(shù)圖象上的一點,且滿足∠DBA=∠CAO(O是坐標原點),求點D的坐標;

(3)點P是該二次函數(shù)圖象上位于一象限上的一動點,連接PA分別交BC,y軸與點E、F,若△PEB、△CEF的面積分別為S1、S2,求S1-S2的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一條寬的道路將矩形花壇分為一個直角三角形和一個直角梯形,根據(jù)圖中數(shù)據(jù),可知這條道路的占地面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

反比例函數(shù)y=(k>0)第一象限內的圖象如圖1所示,點P、R是雙曲線上不同的兩點,過點P、R分別做PAy軸于點A,RCx軸于點C,兩垂線交點為B.

(1)問題提出:線段PB:PABR:RC有怎樣的關系?

問題解決:設點PA=n,PB=m,則點P的坐標為(n,),點R的坐標為(m+n,),AO=BC=,RC=,BR=,

BR:RC=,

PB:PA=,

PB:PA=BR:RC.

問題應用:

(2)利用上面的結論解決問題:

①如圖1,如果BR=6,CR=3,AP=4,BP=   

②如圖2,如果直線PR的關系式y2=﹣x+3,與x軸交于點D,與y軸交于點E,若ED=3PR,求出k的值.

查看答案和解析>>

同步練習冊答案