【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,且AD//BC,BD的垂直平分線經(jīng)過點O,分別與AD、BC交于點EF

1)求證:四邊形ABCD為平行四邊形;

2)求證:四邊形BFDE為菱形.

【答案】1)見解析;(2)見解析.

【解析】

1)由平行線的性質(zhì)可得,根據(jù)EF經(jīng)過點O且垂直平分BD可得,利用ASA可證明△DOA≌△BOC,可得OA=OC,即可證明四邊形ABCD為平行四邊形;

2)利用ASA可證明,可得OE=OF,根據(jù)對角線互相垂直且平分的四邊形是菱形即可得結(jié)論.

1)∵AD//BC經(jīng)過點O,且垂直平分

,,

,

,

OA=OC

∴四邊形為平行四邊形.

2)由(1)知,

∴在,

,

垂直平分,

,

∴四邊形為菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市304國道通遼至霍林郭勒段在修建過程中經(jīng)過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結(jié)果取整數(shù),參考數(shù)據(jù)≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形中,,,,點EAD上,且AE=4,點AB上一點,連接EF,將線段EF 繞點E逆時針旋轉(zhuǎn)120°得到EG,連接DG,則線段DG的最小值為____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人參加射擊比賽,每人射擊五次,命中的環(huán)數(shù)如下表:

次序

第一次

第二次

第三次

第四次

第五次

甲命中的環(huán)數(shù)(環(huán))

6

7

8

6

8

乙命中的環(huán)數(shù)(環(huán))

5

10

7

6

7

根據(jù)以上數(shù)據(jù),下列說法正確的是( )

A.甲的平均成績大于乙B.甲、乙成績的中位數(shù)不同

C.甲、乙成績的眾數(shù)相同D.甲的成績更穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商將一種高檔水果放在商場銷售,該種水果成本價為10,售價為40,每天可銷售20.調(diào)查發(fā)現(xiàn),銷售單價每下降1元,每天的銷售量將增加5

1)直接寫出每天的銷售量ykg與降價(元)之間的函數(shù)關(guān)系式;

2)降價多少元時,每天的銷售額元最大,最大是多少元?(銷售額=售價×數(shù)量)

3)每銷售1水果,需向商場繳納柜臺費元(),水果商計劃租賃柜臺20天,為了促銷,決定開展每天降價1活動,即從第1天開始,每天的銷售單價比前一天下降1元(第1天的銷售單價為39元),經(jīng)測算發(fā)現(xiàn),銷售的前11天,每天的利潤元隨銷售天數(shù)為正整數(shù))的增大而增大,試確定的取值范圍.(利潤=銷售額-成本-柜臺費)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.

1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.

2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲分為三等分?jǐn)?shù)字轉(zhuǎn)盤,乙為四等分?jǐn)?shù)字轉(zhuǎn)盤,自由轉(zhuǎn)動轉(zhuǎn)盤.

(1)轉(zhuǎn)動甲轉(zhuǎn)盤,指針指向的數(shù)字小于3的概率是   ;

(2)同時自由轉(zhuǎn)動兩個轉(zhuǎn)盤,用列舉的方法求兩個轉(zhuǎn)盤指針指向的數(shù)字均為奇數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內(nèi)的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當(dāng)點M在y=的圖象上運動時,以下結(jié)論:

①S△ODB=S△OCA;

②四邊形OAMB的面積不變;

③當(dāng)點A是MC的中點時,則點B是MD的中點.

其中正確結(jié)論的個數(shù)是(

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖12①、②、③,在矩形ABCD中,AB4,BC8P是邊BC上的一個動點.

1)如圖①,若DEAP,垂足為E,求證:AED∽△PBA

2)如圖②,在(1)的條件下,將DE沿AP方向平移,使P、E兩點重合,且與邊CD的交點為M,若MC3,求BP的長.

3)如圖③,Q是邊CD上的一個動點,若2,且H,N,G分別為AP,PQ,PC的中點,請問:在P、Q兩點分別在BC、CD上運動的過程中,四邊形HPGN的面積是否發(fā)生變化?若變化,請說明理由,若不變化,請求出它的面積.

查看答案和解析>>

同步練習(xí)冊答案