【題目】已知:如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,DE⊥BC于E,連接BD,設(shè)AD=m,DC=n,BE=p,DE=q.
(1)若tanC=2,BE=3,CE=2,求點(diǎn)B到CD的距離;
(2)若m=n, BD=3,求四邊形ABCD的面積.
【答案】(1);(2)9.
【解析】
(1)要求點(diǎn)B到CD的距離,于是作垂線構(gòu)造直角三角形,又知tanC=2,BE=3,CE=2,可以得到BF=2FC,設(shè)未知數(shù)根據(jù)勾股定理列方程可以求解;
(2)m=n,即AD=DC,通過作垂線,構(gòu)造全等三角形將問題轉(zhuǎn)化為求正方形BEDG的面積即可.
(1)過點(diǎn)B作BF⊥CD,垂足為F,則∠BFC=90°,
∵DE⊥BC,
∴∠DEC=∠DEB=90°,
在Rt△DEC中,∵tanC=2,EC=2,
∴DE=4,
在Rt△BFC中,∵tanC=2,∴BF=2FC,
設(shè)BF=x,則FC=x,∵BF2+FC2=BC2,
∴x2+(x)2=(3+2)2,
解得:x=,即:BF=,
答:點(diǎn)B到CD的距離是;
(2)過點(diǎn)D作DG⊥AB,交BA的延長線相交于點(diǎn)G,
∵四邊形ABCD的內(nèi)角和是360°,∠ABC=∠ADC=90°,
∴∠C+∠BAD=180°,
又∵∠BAD+∠GAD=180°,
∴∠C=∠GAD,
∵∠DEC=∠G=90°,AD=CD
∴△DEC≌△DGA,(AAS)
∴DE=DG,
∴四邊形BEDG是正方形,
∴S四邊形ABCD=S正方形BEDG=BD2=9.
答:四邊形ABCD的面積是9.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某教學(xué)網(wǎng)站策劃了、兩種上網(wǎng)學(xué)習(xí)的月收費(fèi)方式:
收費(fèi)方式 | 月使用費(fèi)/元 | 月包時(shí)上網(wǎng)時(shí)間/ | 月超時(shí)費(fèi)/(元/) |
7 | 25 | 0.6 | |
10 | 50 | 3 |
設(shè)每月上網(wǎng)學(xué)習(xí)的時(shí)間為.
(Ⅰ)根據(jù)題意,填寫下表:
月使用費(fèi)/元 | 月上網(wǎng)時(shí)間/ | 月超時(shí)費(fèi)/元 | 月總費(fèi)用/元 | |
方式 | 7 | 45 | ||
方式 | 10 | 45 |
(Ⅱ)設(shè),兩種方式的收費(fèi)金額分別為元和元,分別寫出,與的函數(shù)解析式;
(Ⅲ)當(dāng)時(shí),你認(rèn)為哪種收費(fèi)方式省錢?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過矩形的對角線的中點(diǎn)作,交邊于點(diǎn),交邊于點(diǎn),分別連接、.若,,則的長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別交于兩點(diǎn),拋物線經(jīng)過點(diǎn),與軸另一交點(diǎn)為,頂點(diǎn)為.
(1)求拋物線的解析式;
(2)在軸上找一點(diǎn),使的值最小,求的最小值;
(3)在拋物線的對稱軸上是否存在一點(diǎn),使得?若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長DB交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時(shí),求線段DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,為斜邊的中點(diǎn),連接,點(diǎn)是邊上的動點(diǎn)(不與點(diǎn)重合),過點(diǎn)作交延長線交于點(diǎn),連接,下列結(jié)論:
①若,則;
②若,則;
③和一定相似;
④若,則.
其中正確的是_____.(填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個(gè)等級,并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,但均不完整.
請你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)參加比賽的學(xué)生共有____名;
(2)在扇形統(tǒng)計(jì)圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;
(3)組委會決定從本次比賽獲得A等級的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級學(xué)生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以為直徑的⊙分別交于點(diǎn),點(diǎn)在的延長線上,且.
(1)求證:是⊙的切線;
(2)若⊙的直徑為3,,求和的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①若是完全平方式,則;
②若三點(diǎn)在同一直線上,則;
③等腰三角形一邊上的中線所在的直線是它的對稱軸;
④一個(gè)多邊形的內(nèi)角和是它的外角和的倍,則這個(gè)多邊形是六邊形.
其中真命題個(gè)數(shù)是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com