【題目】如圖1,將一張矩形紙ABCD沿著對(duì)角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F.
(1)求證:是等腰三角形;
(2)如圖2,過點(diǎn)D作,交BC于點(diǎn)G,連接FG交BD于點(diǎn)O.
①試判斷四邊形BGDF的形狀,并說明理由;
②若,,求FG的長(zhǎng).
【答案】(1)詳見解析;(2)四邊形BGDF為菱形;(3),
【解析】
(1)根據(jù)兩直線平行內(nèi)錯(cuò)角相等及折疊特性判斷;
(2)①根據(jù)已知矩形性質(zhì)及第一問證得鄰邊相等判斷;
②根據(jù)折疊特性設(shè)未知邊,構(gòu)造勾股定理列方程求解.
(1)證明:如圖1,根據(jù)折疊,∠DBC=∠DBE,
又AD∥BC,
∴∠DBC=∠ADB,
∴∠DBE=∠ADB,
∴DF=BF
∴是等腰三角形;
(2)①∵四邊形ABCD是矩形,
∴AD∥BC,
∴FD∥BG,
又∵DG∥BE,
∴四邊形BFDG是平行四邊形,
∵DF=BF,
∴四邊形BFDG是菱形;
②∵AB=3,AD=4,
∴BD=5.
∴OB=BD=.
假設(shè)DF=BF=x,∴AF=AD-DF=4-x.
∴在直角△ABF中,AB2+AF2=BF2,即32+(4-x)2=x2,
解得x=,
即BF=,
∴FO= ,
∴FG=2FO= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與坐標(biāo)軸交于點(diǎn)、兩點(diǎn),直線與直線相交于點(diǎn),交軸于點(diǎn),且的面積為.
(1)求的值和點(diǎn)的坐標(biāo);
(2)求直線的解析式;
(3)若點(diǎn)是線段上一動(dòng)點(diǎn),過點(diǎn)作軸交直線于點(diǎn),軸,軸,垂足分別為點(diǎn)、,是否存在點(diǎn),使得四邊形為正方形,若存在,請(qǐng)求出點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AED=∠C,∠1+∠2=180°.請(qǐng)說明∠BEC=∠FGC
解:因?yàn)椤?/span>AED=∠C(已知),
所以________∥_______(_________________________________ )
得∠1=∠3( _______________________________ )
又∠1+∠2=180°(已知),
得∠3+∠2=180°(___________________________)
所以_______∥_______
所以∠BEC=∠FGC(___________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=4,BC=3.點(diǎn)E從點(diǎn)A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿折線AC-CB運(yùn)動(dòng),到點(diǎn)B停止.當(dāng)點(diǎn)E不與△ABC的頂點(diǎn)重合時(shí),過點(diǎn)E作其所在直角邊的垂線交AB于點(diǎn)F,將△AEF繞點(diǎn)F沿逆時(shí)針方向旋轉(zhuǎn)得到△NMF,使點(diǎn)A的對(duì)應(yīng)點(diǎn)N落在射線FE上.設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒).
(1)用含t的代數(shù)式表示線段CE的長(zhǎng).
(2)求點(diǎn)M落到邊BC上時(shí)t的值.
(3)當(dāng)點(diǎn)E在邊AC上運(yùn)動(dòng)時(shí),設(shè)△NMF與△ABC重疊部分圖形為四邊形時(shí),四邊形的面積為S(平方單位),求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一袋中裝有形狀大小都相同的四個(gè)小球,每個(gè)小球上各標(biāo)有一個(gè)數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為一個(gè)兩位數(shù)的個(gè)位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為這個(gè)兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個(gè),求其算術(shù)平方根大于4且小于7的概率.
【答案】(1)16種等可能的結(jié)果數(shù),它們是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)
【解析】(1)畫樹狀圖:
共有16種等可能的結(jié)果數(shù),它們是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;
(2)算術(shù)平方根大于4且小于7的結(jié)果數(shù)為6,
所以算術(shù)平方根大于4且小于7的概率==3/8.
【題型】解答題
【結(jié)束】
23
【題目】某高校學(xué)生會(huì)向全校2900名學(xué)生發(fā)起了“愛心一日捐”捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為____,圖①中m的值是____;
(2)求本次你調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,C地位于A、B兩地之間,甲步行直接從C地前往B地,乙騎自行車由C地先回A地,再?gòu)?/span>A地前往B地(在A地停留時(shí)間忽略不計(jì)),已知兩人同時(shí)出發(fā)且速度不變,乙的速度是甲的2.5倍,設(shè)出發(fā)xmin后,甲、乙兩人離C地的距離為y1m、y2m,圖②中線段OM表示y1與x的函數(shù)圖象.
(1)甲的速度為______m/min.乙的速度為______m/min.
(2)在圖②中畫出y2與x的函數(shù)圖象,并求出乙從A地前往B地時(shí)y2與x的函數(shù)關(guān)系式.
(3)求出甲、乙兩人相遇的時(shí)間.
(4)請(qǐng)你重新設(shè)計(jì)題干中乙騎車的條件,使甲、乙兩人恰好同時(shí)到達(dá)B地.
要求:①不改變甲的任何條件.
②乙的騎行路線仍然為從C地到A地再到B地.
③簡(jiǎn)要說明理由.
④寫出一種方案即可.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將含30°角的直角三角尺ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)150°后得到△EBD,連接CD.若AB=4cm.則△BCD的面積為( 。
A. 4 B. 2 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長(zhǎng)線上一點(diǎn),AE⊥DC交DC的延長(zhǎng)線于點(diǎn)E,且AC平分∠EAB.
(1)求證:DE是⊙O的切線;
(2)若AB=6,AE=,求BD和BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:方程組的解x為非正數(shù),y為負(fù)數(shù).
(1)求a的取值范圍;
(2)化簡(jiǎn)|a-3|+|a+2|;
(3)在a的取值范圍中,當(dāng)a為何整數(shù)時(shí),不等式2ax+x>2a+1的解為x<1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com