【題目】如圖1,將一張矩形紙ABCD沿著對(duì)角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BEAD于點(diǎn)F

1)求證:是等腰三角形;

2)如圖2,過點(diǎn)D,交BC于點(diǎn)G,連接FGBD于點(diǎn)O

①試判斷四邊形BGDF的形狀,并說明理由;

②若,,求FG的長(zhǎng).

【答案】1)詳見解析;(2)四邊形BGDF為菱形;(3,

【解析】

1)根據(jù)兩直線平行內(nèi)錯(cuò)角相等及折疊特性判斷;
2)①根據(jù)已知矩形性質(zhì)及第一問證得鄰邊相等判斷;
②根據(jù)折疊特性設(shè)未知邊,構(gòu)造勾股定理列方程求解.

1)證明:如圖1,根據(jù)折疊,∠DBC=DBE,
ADBC,
∴∠DBC=ADB,
∴∠DBE=ADB,
DF=BF

是等腰三角形;

2)①∵四邊形ABCD是矩形,
ADBC,
FDBG
又∵DGBE,
∴四邊形BFDG是平行四邊形,
DF=BF,
∴四邊形BFDG是菱形;
②∵AB=3,AD=4
BD=5
OB=BD=
假設(shè)DF=BF=x,∴AF=AD-DF=4-x
∴在直角ABF中,AB2+AF2=BF2,即32+4-x2=x2,

解得x=

BF=,

FO= ,

FG=2FO= .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與坐標(biāo)軸交于點(diǎn)、兩點(diǎn),直線與直線相交于點(diǎn),交軸于點(diǎn),且的面積為.

(1)的值和點(diǎn)的坐標(biāo);

(2)求直線的解析式;

(3)若點(diǎn)是線段上一動(dòng)點(diǎn),過點(diǎn)軸交直線于點(diǎn)軸,軸,垂足分別為點(diǎn)、,是否存在點(diǎn),使得四邊形為正方形,若存在,請(qǐng)求出點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AED=C,1+2=180°.請(qǐng)說明∠BEC=FGC

解:因?yàn)椤?/span>AED=C(已知),

所以________________________________________________

得∠1=3 _______________________________

又∠1+2=180°(已知),

得∠3+2=180°___________________________

所以______________

所以∠BEC=FGC___________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=4,BC=3.點(diǎn)E從點(diǎn)A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿折線AC-CB運(yùn)動(dòng),到點(diǎn)B停止.當(dāng)點(diǎn)E不與△ABC的頂點(diǎn)重合時(shí),過點(diǎn)E作其所在直角邊的垂線交AB于點(diǎn)F,將△AEF繞點(diǎn)F沿逆時(shí)針方向旋轉(zhuǎn)得到△NMF,使點(diǎn)A的對(duì)應(yīng)點(diǎn)N落在射線FE上.設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒).

(1)用含t的代數(shù)式表示線段CE的長(zhǎng).

(2)求點(diǎn)M落到邊BC上時(shí)t的值.

(3)當(dāng)點(diǎn)E在邊AC上運(yùn)動(dòng)時(shí),設(shè)NMF與△ABC重疊部分圖形為四邊形時(shí),四邊形的面積為S(平方單位),求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一袋中裝有形狀大小都相同的四個(gè)小球,每個(gè)小球上各標(biāo)有一個(gè)數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為一個(gè)兩位數(shù)的個(gè)位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為這個(gè)兩位數(shù)的十位數(shù).

(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);

(2)從這些兩位數(shù)中任取一個(gè),求其算術(shù)平方根大于4且小于7的概率.

【答案】(1)16種等可能的結(jié)果數(shù),它們是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)

【解析】(1)畫樹狀圖:

共有16種等可能的結(jié)果數(shù),它們是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;

(2)算術(shù)平方根大于4且小于7的結(jié)果數(shù)為6,

所以算術(shù)平方根大于4且小于7的概率==3/8.

型】解答
結(jié)束】
23

【題目】某高校學(xué)生會(huì)向全校2900名學(xué)生發(fā)起了“愛心一日捐”捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為____,圖①中m的值是____;

(2)求本次你調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,C地位于A、B兩地之間,甲步行直接從C地前往B地,乙騎自行車由C地先回A地,再從A地前往B地(在A地停留時(shí)間忽略不計(jì)),已知兩人同時(shí)出發(fā)且速度不變,乙的速度是甲的2.5倍,設(shè)出發(fā)xmin后,甲、乙兩人離C地的距離為y1m、y2m,圖②中線段OM表示y1x的函數(shù)圖象.

1)甲的速度為______m/min.乙的速度為______m/min

2)在圖②中畫出y2x的函數(shù)圖象,并求出乙從A地前往B地時(shí)y2x的函數(shù)關(guān)系式.

3)求出甲、乙兩人相遇的時(shí)間.

4)請(qǐng)你重新設(shè)計(jì)題干中乙騎車的條件,使甲、乙兩人恰好同時(shí)到達(dá)B地.

要求:①不改變甲的任何條件.

②乙的騎行路線仍然為從C地到A地再到B地.

③簡(jiǎn)要說明理由.

④寫出一種方案即可.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將含30°角的直角三角尺ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)150°后得到△EBD,連接CD.若AB=4cm.則△BCD的面積為( 。

A. 4 B. 2 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O△ABC的外接圓,AB⊙O的直徑,DAB延長(zhǎng)線上一點(diǎn),AE⊥DCDC的延長(zhǎng)線于點(diǎn)E,且AC平分∠EAB.

(1)求證:DE⊙O的切線;

2)若AB=6,AE=,求BDBC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:方程組的解x為非正數(shù),y為負(fù)數(shù).

(1)a的取值范圍;

(2)化簡(jiǎn)|a3||a2|

(3)a的取值范圍中,當(dāng)a為何整數(shù)時(shí),不等式2axx2a1的解為x1.

查看答案和解析>>

同步練習(xí)冊(cè)答案