【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,點(diǎn)A、B、C都是格點(diǎn).

(1)將△ABC向左平移6個(gè)單位長(zhǎng)度得到△A 1B 1C 1,請(qǐng)?jiān)诰W(wǎng)格中畫出△A 1B 1C 1

(2)將△ABC繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)180°得到△A 2B 2C 2,請(qǐng)?jiān)诰W(wǎng)格畫出△A 2B 2C 2

(3)請(qǐng)問(wèn)△A 1B 1C 1與△A 2B 2C 2成中心對(duì)稱嗎?

【答案】(1)作圖見(jiàn)解析;(2)作圖見(jiàn)解析;(3)是.

【解析】整體分析:

(1)分別將點(diǎn)A,B,C向左平移6個(gè)單位長(zhǎng)度,得到點(diǎn)A1,B1,C1;(2)分別連接AO,BO,CO,并延長(zhǎng)到A2,B2,C2使A2O=AO,B2O=BO,C2O=CO;(3)由中心對(duì)稱圖形的定義判斷.

(1)如圖所示:

(2)如圖所示:

(3)△A1B1C1與△A2B2C2成中心對(duì)稱.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解中學(xué)生參加體育活動(dòng)情況,某校對(duì)部分學(xué)生進(jìn)行了調(diào)查,其中一個(gè)問(wèn)題是:“你平均每天參加體育活動(dòng)的時(shí)間是多少?”共有4個(gè)選項(xiàng)(每個(gè)時(shí)間段含最小值不含最大值):

A.1.5小時(shí)以上 B.1—1.5小時(shí) C.0.5 —1小時(shí) D.0.5小時(shí)以下

根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)以上信息解答下列問(wèn)題:

(1)本次調(diào)查活動(dòng)采取了 的調(diào)查方式.(填“普查”或“抽樣調(diào)查”)

(2)本次調(diào)查共調(diào)查了________人,圖(2)中選項(xiàng)C的圓心角為 ______度.

(3)請(qǐng)將圖(1)中選項(xiàng)B的部分補(bǔ)充完整.

(4)若該校有2000名學(xué)生,你估計(jì)該校可能有_______名學(xué)生平均每天參加體育活動(dòng)的時(shí)間在1小時(shí)以下.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b和反比例函數(shù)y= 的圖象的兩個(gè)交點(diǎn).

(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出方程kx+b﹣ =0的解;
(3)求△AOB的面積;
(4)觀察圖象,直接寫出不等式kx+b﹣ <0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將正偶數(shù)按照?qǐng)D中所示的規(guī)律排列下去,若用有序?qū)崝?shù)對(duì)(a,b)表示第a行的第b個(gè)數(shù).如(3,2)表示偶數(shù)10.

(1)圖中(8,4)的位置表示的數(shù)是________,偶數(shù)42對(duì)應(yīng)的有序?qū)崝?shù)對(duì)是________

(2)第n行的最后一個(gè)數(shù)用含n的代數(shù)式表示為________,并簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,A、BC三點(diǎn)的坐標(biāo)分別為、

畫出,并求的面積;

中,點(diǎn)C經(jīng)過(guò)平移后的對(duì)應(yīng)點(diǎn)為,將作同樣的平移得到,畫出平移后的,并寫出點(diǎn),的坐標(biāo);

已知點(diǎn)內(nèi)一點(diǎn),將點(diǎn)P向右平移4個(gè)單位后,再向下平移6個(gè)單位得到點(diǎn),則____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)M是二次函數(shù)y=ax2(a>0)圖象上的一點(diǎn),點(diǎn)F的坐標(biāo)為(0, ),直角坐標(biāo)系中的坐標(biāo)原點(diǎn)O與點(diǎn)M,F(xiàn)在同一個(gè)圓上,圓心Q的縱坐標(biāo)為

(1)求a的值;
(2)當(dāng)O,Q,M三點(diǎn)在同一條直線上時(shí),求點(diǎn)M和點(diǎn)Q的坐標(biāo);
(3)當(dāng)點(diǎn)M在第一象限時(shí),過(guò)點(diǎn)M作MN⊥x軸,垂足為點(diǎn)N,求證:MF=MN+OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),P是對(duì)角線AC上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PF⊥CD于點(diǎn)F.如圖1,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),顯然有DF=CF.

(1)如圖2,若點(diǎn)P在線段AO上(不與點(diǎn)A、O重合),PE⊥PB且PE交CD于點(diǎn)E.

①求證:DF=EF;

②寫出線段PC、PA、CE之間的一個(gè)等量關(guān)系;并說(shuō)出理由;

(2)若點(diǎn)P在線段OC上(不與點(diǎn)O、C重合),PE⊥PB且PE交直線CD于點(diǎn)E.請(qǐng)完成圖3并判斷(1)中的結(jié)論①、②是否分別成立?若不成立,寫出相應(yīng)的結(jié)論.(所寫結(jié)論均不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一條長(zhǎng)為18cm的細(xì)繩圍成一個(gè)等腰三角形.

(1)如果腰長(zhǎng)是底邊長(zhǎng)的2倍,求三角形各邊的長(zhǎng);

(2)能圍成有一邊的長(zhǎng)是4cm的等腰三角形嗎?若能,求出其他兩邊的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=2x2﹣2 x+1與坐標(biāo)軸的交點(diǎn)個(gè)數(shù)是(  )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案