【題目】已知一次函數(shù)y=kx+b的圖像經(jīng)過(guò)點(diǎn)(-1.-5),且與正比例函數(shù)y=x的圖象相交于點(diǎn)(2,m).
(1)求m的值;
(2)求一次函數(shù)y=kx+b的解析式;
(3)求這兩個(gè)函數(shù)圖像與x軸所圍成的三角形面積.
【答案】(1)m=1 (2)y=2x-3 (3)
【解析】試題分析:(1)將點(diǎn)(2,m)代入正比例函數(shù)求出m的值;(2)將(-1,-5)和交點(diǎn)代入一次函數(shù)求出解析式;(3)、三角形的面積根據(jù)面積計(jì)算法則進(jìn)行計(jì)算
試題解析:(1)、將(2,m)代入y=x,得:m=2×=1
(2)、將(-1,-5)和(2,1)代入y=kx+b,
得: 解得: 即一次函數(shù)的解析式為:y=2x-3
(3)、一次函數(shù)與x軸的交點(diǎn)為(,0) ∴S=×1÷2=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀(guān)察下列方程的特征及其解的特點(diǎn).
①x+=-3的解為x1=-1,x2=-2;
②x+=-5的解為x1=-2,x2=-3;
③x+=-7的解為x1=-3,x2=-4.
解答下列問(wèn)題:
(1)請(qǐng)你寫(xiě)出一個(gè)符合上述特征的方程為____________,其解為x1=-4,x2=-5;
(2)根據(jù)這類(lèi)方程特征,寫(xiě)出第n個(gè)方程為________________,其解為x1=-n,x2=-n-1;
(3)請(qǐng)利用(2)的結(jié)論,求關(guān)于x的方程x+=-2(n+2)(其中n為正整數(shù))的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°, AD平分∠BAC交BC于D,DE⊥AB于E
求證:(1)△ACD≌△AED;(2)若AB=6,求△DEB的周長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD為臺(tái)球桌面,AD=260cm,AB=130cm,球目前在E點(diǎn)位置,AE=60cm.如果小丁瞄準(zhǔn)BC邊上的點(diǎn)F將球打過(guò)去,經(jīng)過(guò)反彈后,球剛好彈到D點(diǎn)位置.
(1)求證:△BEF∽△CDF;
(2)求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)頂點(diǎn)A,B,C的坐標(biāo)分別為A(4,0),B(0,-3),C(2,-4).
(1)在如圖的平面直角坐標(biāo)系中畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A'B'C',并分別寫(xiě)出A′,B′,C′的坐標(biāo);
(2)將△ABC向左平移5個(gè)單位,請(qǐng)畫(huà)出平移后的△A″B″C″,并寫(xiě)出△A″B″C″各個(gè)頂點(diǎn)的坐標(biāo);
(3)求出(2)中的△ABC在平移過(guò)程中所掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作與探索:
在圖①~③中,△ABC的面積為a.
(1)如圖①,延長(zhǎng)△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA,若△ACD的面積為S1,則S1=________(用含a的式子表示);
(2)如圖②,延長(zhǎng)△ABC的邊BC到點(diǎn)D,延長(zhǎng)邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE,若△DEC的面積為S2,則S2=________(用含a的式子表示),請(qǐng)說(shuō)明理由;
(3)如圖③,在圖②的基礎(chǔ)上延長(zhǎng)AB到點(diǎn)F,使BF=AB,連接FD,FE,得到△DEF,若陰影部分的面積為S3,則S3=________(用含a的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)類(lèi)比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類(lèi)的目的.下面是一個(gè)案例,請(qǐng)補(bǔ)充完整.
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說(shuō)明理由.
(1)思路梳理
∵AB=CD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線(xiàn).
根據(jù)___________,SAS
易證△AFG≌___________△AEF
,得EF=BE+DF.
(2)類(lèi)比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°.點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿(mǎn)足等量關(guān)系______________∠B+∠D=180°
時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿(mǎn)足的等量關(guān)系,并寫(xiě)出推理過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】永州市是一個(gè)降水豐富的地區(qū),今年4月初,某地連續(xù)降雨導(dǎo)致該地某水庫(kù)水位持續(xù)上漲,下表是該水庫(kù)4月1日~4月4日的水位變化情況:
日期x | 1 | 2 | 3 | 4 |
水位y(米) | 20.00 | 20.50 | 21.00 | 21.50 |
(1)請(qǐng)建立該水庫(kù)水位y與日期x之間的函數(shù)模型;
(2)請(qǐng)用求出的函數(shù)表達(dá)式預(yù)測(cè)該水庫(kù)今年4月6日的水位;
(3)你能用求出的函數(shù)表達(dá)式預(yù)測(cè)該水庫(kù)今年12月1日的水位嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)AB與函數(shù)y=(x>0)的圖象交于點(diǎn)A(m,2),B(2,n).過(guò)點(diǎn)A作AC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com