【題目】已知一次函數(shù)y=kx+b的圖像經(jīng)過點(-1.-5),且與正比例函數(shù)y=x的圖象相交于點(2,m).
(1)求m的值;
(2)求一次函數(shù)y=kx+b的解析式;
(3)求這兩個函數(shù)圖像與x軸所圍成的三角形面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列方程的特征及其解的特點.
①x+=-3的解為x1=-1,x2=-2;
②x+=-5的解為x1=-2,x2=-3;
③x+=-7的解為x1=-3,x2=-4.
解答下列問題:
(1)請你寫出一個符合上述特征的方程為____________,其解為x1=-4,x2=-5;
(2)根據(jù)這類方程特征,寫出第n個方程為________________,其解為x1=-n,x2=-n-1;
(3)請利用(2)的結(jié)論,求關(guān)于x的方程x+=-2(n+2)(其中n為正整數(shù))的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°, AD平分∠BAC交BC于D,DE⊥AB于E
求證:(1)△ACD≌△AED;(2)若AB=6,求△DEB的周長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準(zhǔn)BC邊上的點F將球打過去,經(jīng)過反彈后,球剛好彈到D點位置.
(1)求證:△BEF∽△CDF;
(2)求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個頂點A,B,C的坐標(biāo)分別為A(4,0),B(0,-3),C(2,-4).
(1)在如圖的平面直角坐標(biāo)系中畫出△ABC關(guān)于x軸對稱的△A'B'C',并分別寫出A′,B′,C′的坐標(biāo);
(2)將△ABC向左平移5個單位,請畫出平移后的△A″B″C″,并寫出△A″B″C″各個頂點的坐標(biāo);
(3)求出(2)中的△ABC在平移過程中所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與探索:
在圖①~③中,△ABC的面積為a.
(1)如圖①,延長△ABC的邊BC到點D,使CD=BC,連接DA,若△ACD的面積為S1,則S1=________(用含a的式子表示);
(2)如圖②,延長△ABC的邊BC到點D,延長邊CA到點E,使CD=BC,AE=CA,連接DE,若△DEC的面積為S2,則S2=________(用含a的式子表示),請說明理由;
(3)如圖③,在圖②的基礎(chǔ)上延長AB到點F,使BF=AB,連接FD,FE,得到△DEF,若陰影部分的面積為S3,則S3=________(用含a的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例,請補充完整.
原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.
(1)思路梳理
∵AB=CD,
∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點F、D、G共線.
根據(jù)___________,SAS
易證△AFG≌___________△AEF
,得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°.點E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系______________∠B+∠D=180°
時,仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】永州市是一個降水豐富的地區(qū),今年4月初,某地連續(xù)降雨導(dǎo)致該地某水庫水位持續(xù)上漲,下表是該水庫4月1日~4月4日的水位變化情況:
日期x | 1 | 2 | 3 | 4 |
水位y(米) | 20.00 | 20.50 | 21.00 | 21.50 |
(1)請建立該水庫水位y與日期x之間的函數(shù)模型;
(2)請用求出的函數(shù)表達式預(yù)測該水庫今年4月6日的水位;
(3)你能用求出的函數(shù)表達式預(yù)測該水庫今年12月1日的水位嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負(fù)半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com