【題目】服裝店準(zhǔn)備購進(jìn)甲乙兩種服裝共100件,費(fèi)用不得超過7500.甲種服裝每件進(jìn)價(jià)80元,每件售價(jià)120元;乙種服裝每件進(jìn)價(jià)60元,每件售價(jià)90.

(Ⅰ)設(shè)購進(jìn)甲種服裝件,試填寫下表.

表一

購進(jìn)甲種服裝的數(shù)量/

10

20

購進(jìn)甲種服裝所用費(fèi)用/

800

1600

購進(jìn)乙種服裝所用費(fèi)用/

5400

表二

購進(jìn)甲種服裝的數(shù)量/

10

20

甲種服裝獲得的利潤(rùn)/

800

乙種服裝獲得的利潤(rùn)/

2700

2400

(Ⅱ)給出能夠獲得最大利潤(rùn)的進(jìn)貨方案,并說明理由.

【答案】(Ⅰ),4800,,400,,;(Ⅱ)購進(jìn)甲種服裝75件,乙種服裝25件時(shí),可獲得最大利潤(rùn),理由見解析

【解析】

1)甲服裝的件數(shù)乘以進(jìn)貨價(jià)即為購進(jìn)甲種服裝所用費(fèi)用,乙的進(jìn)貨價(jià)乘以(100-甲的件數(shù))即為購進(jìn)乙種服裝所用費(fèi)用;利潤(rùn)=(售價(jià)-進(jìn)貨價(jià))×件數(shù);

2)設(shè)購進(jìn)甲種服裝件,根據(jù)費(fèi)用不得超過7500元,求出x的范圍,然后求出利潤(rùn)關(guān)于x的函數(shù)關(guān)系式,再由函數(shù)的性質(zhì)求出最值即可.

(Ⅰ)表一

購進(jìn)甲種服裝的數(shù)量/

10

20

購進(jìn)甲種服裝所用費(fèi)用/

800

1600

購進(jìn)乙種服裝所用費(fèi)用/

5400

4800

表二

購進(jìn)甲種服裝的數(shù)量/

10

20

甲種服裝獲得的利潤(rùn)/

400

800

乙種服裝獲得的利潤(rùn)/

2700

2400

(Ⅱ)設(shè)購進(jìn)甲種服裝件,由題意可知:

解得:.

購進(jìn)甲種服裝件,總利潤(rùn)為元,,

,

的增大而增大,

∴當(dāng)時(shí),有最大值,

則購進(jìn)甲種服裝75件,乙種服裝25件時(shí),可獲得最大利潤(rùn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于下列說法,錯(cuò)誤的個(gè)數(shù)是( 。

是分式;②當(dāng)x≠1時(shí),成立;③當(dāng)x=3時(shí),分式的值是零;④a;⑤;⑥2x

A.6個(gè)B.5個(gè)C.4個(gè)D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快、慢兩車分別從相距360km的佳市、哈市兩地出發(fā),勻速行駛,先相向而行,慢車在快車出發(fā)1h后出發(fā),到達(dá)佳市后停止行駛,快車到達(dá)哈市后,立即按原路原速返回佳市(快車調(diào)頭的時(shí)間忽略不計(jì)),快、慢兩車距哈市的路程y1(單位:km),y2(單位:km)與快車出發(fā)時(shí)間x(單位:h)之間的函數(shù)圖象如圖所示,請(qǐng)結(jié)合圖象信息解答下列問題:

(1)直接寫出慢車的行駛速度和a的值;

(2)快車與慢車第一次相遇時(shí),距離佳市的路程是多少千米?

(3)快車出發(fā)多少小時(shí)后兩車相距為100km?請(qǐng)直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的邊長(zhǎng)為4,點(diǎn)的中心,.繞點(diǎn)旋轉(zhuǎn),分別交線段兩點(diǎn),連接,給出下列四個(gè)結(jié)論:;;③四邊形的面積始終等于;④△周長(zhǎng)的最小值為6,上述結(jié)論中正確的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝公司試銷一種成本為每件50元的恤衫.試銷中發(fā)現(xiàn),當(dāng)銷售單價(jià)是60元時(shí),售出400件;銷售單價(jià)每降低1元,多售出10件.設(shè)試銷中銷售單價(jià)(元)時(shí)的銷售量為(件).

(1)求之間的函數(shù)關(guān)系式;

(2)設(shè)該公司獲得的總利潤(rùn)為元,求之間的函數(shù)關(guān)系式;

(3)若要銷量不低于200件,且獲利至少5250元,則售價(jià)應(yīng)在何范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是平行四邊形,CD為⊙O的切線,點(diǎn)C是切點(diǎn).

(1)如圖1,若AB為⊙O直徑,求四邊形ABCD各內(nèi)角的度數(shù);

(2)如圖2,若AB為弦,⊙O的半徑為3cm,當(dāng)BC=2cm時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片ABCD,AB=7,BC=4,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E、F,則EF=__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C處測(cè)得教學(xué)樓頂部D處的仰角為18°,教學(xué)樓底部B處的俯角為20°,教學(xué)樓的高BD=21m,求實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB(結(jié)果保留整數(shù)).(參考數(shù)據(jù):tan18°≈0.32,tan20°≈0.36)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以點(diǎn)O為圓心的圓分別交x軸的正半軸于點(diǎn)M,交y軸的正半軸于點(diǎn)N.劣弧的長(zhǎng)為,直線x軸、y軸分別交于點(diǎn)A、B

(1)求證:直線AB與⊙O相切;

(2)求圖中所示的陰影部分的面積(結(jié)果用π表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案