【題目】如圖,RtABO,BOA=90°,BAO=30°.AB為一邊向上作等邊三角形ABE,點(diǎn)DOA垂直平分線上的一點(diǎn),ADAB,連接BD、OD、OE.

(1)判斷ADO的形狀,并說(shuō)明理由;

(2)求證:BD=OE

(3)在射線BA上有一動(dòng)點(diǎn)P,PAO為等腰三角形,直接寫出∠AOP的度數(shù)

【答案】1ADO是等邊三角形,理由見(jiàn)解析;(2)證明見(jiàn)解析;(375°30°15°.

【解析】

1)根據(jù)ADAB且∠BAO=30°可求出∠DAO=60°,然后根據(jù)垂直平分線的性質(zhì)得到OD=DA,即可證明ADO是等邊三角形;

2)根據(jù)等邊三角形的性質(zhì)結(jié)合SAS證明ABD≌△AEO即可;

3)分情況討論:①當(dāng)OA=AP時(shí),②當(dāng)OP=AP時(shí),③當(dāng)OA=AP時(shí),分別根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理及三角形外角的性質(zhì)求解即可.

1ADO是等邊三角形;

理由:∵DABA,∠BAO=30°,

∴∠DAO=90°-30°=60°

∵點(diǎn)DOA垂直平分線上的一點(diǎn),

OD=DA,

∴△ADO是等邊三角形;

2)∵ABEADO是等邊三角形,

DA=OA,AB=AE,∠OAD=EAB=60°,

∵∠BAO=30°,

∴∠BAD=EAO=90°

ABD≌△AEOSAS),

BD=OE;

3)分情況討論:

①當(dāng)OA=AP時(shí),如圖,

∵∠BAO=30°

∴∠AOP1=180°30°÷2=75°;

②當(dāng)OP=AP時(shí),如圖,

∵∠BAO=30°

∴∠AOP2=BAO=30°;

③當(dāng)OA=AP時(shí),如圖,

∴∠AOP3=AP3O,

∵∠BAO=30°,

∴∠AOP3=BAO=15°,

綜上所述:∠AOP的度數(shù)為75°30°15°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)兩點(diǎn).

求拋物線的解析式和頂點(diǎn)坐標(biāo);

當(dāng)時(shí),求的取值范圍;

點(diǎn)為拋物線上一點(diǎn),若,求出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2﹣bx+c交x軸于點(diǎn)A(1,0),交y軸于點(diǎn)B,對(duì)稱軸是x=2.

(1)求拋物線的解析式;

(2)點(diǎn)P是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)P,使PAB的周長(zhǎng)最小?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在矩形中,,,兩條對(duì)角線相交于點(diǎn).以為鄰邊作第個(gè)平行四邊形,對(duì)角線相交于點(diǎn);再以、為鄰邊作第個(gè)平行四邊形,對(duì)角線相交于點(diǎn);再以為鄰邊作第個(gè)平行四邊形依此類推.

求矩形的面積;

求第個(gè)平行四邊形,第個(gè)平行四邊形和第個(gè)平行四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,.

⑴已知線段AB的垂直平分線與BC邊交于點(diǎn)P,連結(jié)AP,求證:;

⑵以點(diǎn)B為圓心,線段AB的長(zhǎng)為半徑畫弧,與BC邊交于點(diǎn)Q,連結(jié)AQ,若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠C=50°,∠B=D=90°,E,F分別是BC,DC上的點(diǎn),當(dāng)△AEF的周長(zhǎng)最小時(shí),∠EAF=________度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.

(1)求證:△ACE≌△ACF;

(2)若AB=21,AD=9,AC=17,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從邊長(zhǎng)為a的正方形中剪掉一個(gè)邊長(zhǎng)為b的正方形(如圖1),然后將剩余部分拼成一個(gè)長(zhǎng)方形(如圖2.

1)上述操作能驗(yàn)證的等式是________(填ABC

Aa2-2ab+b2=a-b2

Ba2-b2=a+b)(a-b

Ca2+ab=aa+b)  

2)應(yīng)用你從(1)中選出的等式,完成下列各題:

①已知x2-4y2=12,x+2y=4,x-2y的值

②計(jì)算:(1-)(1-)(1-1-)(1-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于、兩點(diǎn),與軸交于點(diǎn),且

求拋物線的解析式及頂點(diǎn)的坐標(biāo);

判斷的形狀,證明你的結(jié)論;

點(diǎn)軸上的一個(gè)動(dòng)點(diǎn),當(dāng)的周長(zhǎng)最小時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案