【題目】如圖,把△ABC沿EF對折,疊合后的圖形如圖所示.若∠A=60°,∠1=85°,則∠2的度數(shù)( )
A. 24°B. 25°C. 30°D. 35°
【答案】D
【解析】
首先根據(jù)三角形內(nèi)角和定理可得∠AEF+∠AFE=120°,再根據(jù)鄰補角的性質(zhì)可得∠FEB+∠EFC=360°-120°=240°,再根據(jù)由折疊可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后計算出∠1+∠2的度數(shù),進而得到答案.
解:∵∠A=60°,
∴∠AEF+∠AFE=180°-60°=120°,
∴∠FEB+∠EFC=360°-120°=240°,
∵由折疊可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,
∴∠1+∠2=240°-120°=120°,
∵∠1=85°,
∴∠2=120°-85°=35°.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=x+4與坐標軸分別交于A,B兩點,拋物線y=﹣x2+bx+c過A,B兩點,點D為線段AB上一動點,過點D作CD⊥x軸于點C,交拋物線于點E.
(1)求拋物線的解析式.
(2)求△ABE面積的最大值.
(3)連接BE,是否存在點D,使得△DBE和△DAC相似?若存在,求出點D坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在藝術(shù)節(jié)宣傳活動中,采用了四種宣傳形式:A唱歌,B舞蹈,C朗誦,D器樂.全校的每名學(xué)生都選擇了一種宣傳形式參與了活動,小明對同學(xué)們選用的宣傳形式,進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了如圖兩種不完整的統(tǒng)計圖表:
選項 | 方式 | 百分比 |
A | 唱歌 | 35% |
B | 舞蹈 | a |
C | 朗誦 | 25% |
D | 器樂 | 30% |
請結(jié)合統(tǒng)計圖表,回答下列問題:
(1)本次調(diào)查的學(xué)生共人,a= , 并將條形統(tǒng)計圖補充完整 ;
(2)如果該校學(xué)生有2000人,請你估計該校喜歡“唱歌”這種宣傳形式的學(xué)生約有多少人?
(3)學(xué)校采用調(diào)查方式讓每班在A、B、C、D四種宣傳形式中,隨機抽取兩種進行展示,請用樹狀圖或列表法,求某班抽到的兩種形式有一種是“唱歌”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD的對角線BD上一點,PE⊥BC于點E,PF⊥CD于點F,連接EF,給出下列五個結(jié)論:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC,其中正確結(jié)論的序號是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,,,,E是BC的中點,點P以每秒1個單位長度的速度從點A出發(fā),沿AD向點D運動;點Q同時以每秒2個單位長度的速度從點C出發(fā),沿CB向點B運動當點P停止運動時,點Q也隨之停止運動當運動時間為______秒時,以點P、Q、E、D為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅同學(xué)在做作業(yè)時,遇到這樣一道幾何題:
已知:AB∥CD∥EF,∠A=110°,∠ACE=100°,過點E作EH⊥EF,垂足為E,交CD于H點.
(1)依據(jù)題意,補全圖形;
(2)求∠CEH的度數(shù).
小明想了許久對于求∠CEH的度數(shù)沒有思路,就去請教好朋友小麗,小麗給了他如圖2所示的提示:
請問小麗的提示中理由①是 ;
提示中②是: 度;
提示中③是: 度;
提示中④是: ,理由⑤是 .
提示中⑥是 度;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乘法公式的探究與應(yīng)用:
(1)如圖甲,邊長為a的大正方形中有一個邊長為b的小正方形,請你寫出陰影部分的面積是
(2)小顆將陰影部分接下來,重新拼成一個長方形,如圖乙,則長方形的長是 ,寬是 ,面積是 (寫成多項式乘法的形式).
(3)比較甲乙兩圖陰影部分的面積,可以得到恒等式
(4)運用你所得到的公式計算:10.3×9.7.
(5)若49x2﹣y2=25,7x﹣y=5,則7x+y的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形△ABCD中,AB=2,AD=1,E為CD中點,P為AB邊上一動點(含端點),F為CP中點,則△CEF的周長最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com