【題目】如圖,將長方形紙片的一角作折疊,使頂點 A 落在 A, DE 為折痕,將 BEA對折,使得 B落在直線 EA上,得折痕 EG .

(1) DEG 的度數(shù);

(2) EA恰好平分 DEB ,求 DEA的度數(shù) .

【答案】190°;(260°.

【解析】

1)由折疊的性質(zhì)可得∠A'ED=AED,∠BEG=B'EG,又因為∠AEB=180°從而可求得∠DEG

2)由角平分線的性質(zhì)及∠DEG的度數(shù)即可得出結(jié)論.

1)由折疊的性質(zhì)可得∠A'ED=AED,∠BEG=B'EG,∴∠DEG=DEB'+B'EG=180°÷2=90°;

2)∵EA恰好平分 DEB,∴∠DEA=BEA′.

∵∠BEG=B'EG,∴∠DEA=2GEB′.

∵∠DEG=90°,∴∠GEB=30°,∴∠DEA=60°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳環(huán)保,你我同行.兩年來,揚州市區(qū)的公共自行車給市民出行帶來切實方便.電視臺記者在某區(qū)街頭隨機選取了市民進行調(diào)查,調(diào)查的問題是您大概多久使用一次公共自行車?,將本次調(diào)查結(jié)果歸為四種情況:A.每天都用;B.經(jīng)常使用;C.偶爾使用;D.從未使用.將這次調(diào)查情況整理并繪制如下兩幅統(tǒng)計圖如圖2:

根據(jù)圖中的信息,解答下列問題:

(1)本次活動共有      位市民參與調(diào)查;

(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中A項所對應(yīng)的圓心角的度數(shù)為      

(4)根據(jù)統(tǒng)計結(jié)果,若該區(qū)有46萬市民,請估算每天都用公共自行車的市民約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC內(nèi)接于半徑為1的⊙O,以BC為一邊作⊙O的內(nèi)接矩形BCDE,求矩形BCDE的面積 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對任意一個三位數(shù),如果滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”的各個數(shù)位上的數(shù)字之和記為. 例如時,.

(1)對于“相異數(shù)”,若,請你寫出一個的值;

(2)都是“相異數(shù)”,其中,(,都是正整數(shù)),規(guī)定:,當時,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形,對角線交于點,點分別是的中點,連接,連接

1)證明:四邊形是平行四邊形

2)點是哪些線段的中點,寫出結(jié)論,并選擇一組給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個動點P在平面直角坐標系中按箭頭所示方向作折線運動,即第一次從原點運動到(1,1),第二次從(1,1)運動到(2,0),第三次從(2,0)運動到(3,2),第四次從(32)運動到(4,0),第五次從(4,0)運動到(51),……,按這樣的運動規(guī)律,經(jīng)過第2019次運動后,動點P的坐標是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).

(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;

(2)將△ABC繞著點A順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點B2、C2的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程組的解滿足為非正數(shù),為負數(shù).

1)求的取值范圍;

2)化簡:

3)在的取值范圍內(nèi),當為何整數(shù)時不等式的解集為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的面積為20,對角線,交于點;以,為鄰邊做平行四邊形,對角線交于點;以為鄰邊做平行四邊形;…;依此類推,則平行四邊形的面積為(

A.B.C.D.45

查看答案和解析>>

同步練習冊答案