△ABC的內(nèi)切圓半徑為2cm,△ABC的周長為5cm,則△ABC的面積是 cm2.
5
考點: 三角形的內(nèi)切圓與內(nèi)心.
分析: 連OA,OB,OC.把三角形ABC分成三個三角形,根據(jù)內(nèi)心的性質(zhì)和三角形面積公式用三個三角形的面積的和表示三角形ABC面積,計算即可.
解答: 解:如圖,⊙O是△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn).
連OA,OB,OC,OD,OE,OF.
則OD⊥AB,OE⊥BC,OF⊥AC,且OE=OF=OD=2,
S△ABC=S△AOB+S△OBC+S△OAC
=×2×AB+×2×BC+×2×AC
=(AB+AC+BC)×2=5,
故答案為:5.
點評: 本題考查的是三角形的內(nèi)心的性質(zhì),掌握三角形的內(nèi)心是三角形三條角平分線的交點是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,
(1)求證:△ACD∽△BAC;
(2)求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,點P由B出發(fā)沿BD方向勻速運動,速度為1cm/s;同時,線段EF由DC出發(fā)沿DA方向勻速運動,速度為1cm/s,交BD于Q,連接PE.若設(shè)運動時間為t(s)(0<t<5).解答下列問題:
(1)當(dāng)t為何值時,PE∥AB;
(2)設(shè)△PEQ的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使S△PEQ=S△BCD?若存在,求出此時t的值;若不存在,說明理由;
(4)連接PF,在上述運動過程中,五邊形PFCDE的面積是否發(fā)生變化?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
用如圖所示的扇形紙片制作一個圓錐的側(cè)面,要求圓錐的高是4cm,底面周長是6πcm,則扇形的半徑為( 。
A. 3cm B. 5cm C. 6cm D. 8cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被3等分,指針落在每個扇形內(nèi)的機會均等.
(1)現(xiàn)隨機轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向1的概率為 ;
(2)小明和小華利用這個轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認(rèn)為對雙方公平嗎?請用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/千克)之間的函數(shù)關(guān)系式.當(dāng)銷售價為多少時,每天的銷售利潤最大?最大利潤是多少?
(3)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應(yīng)定為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com