【題目】(14分)如圖,已知拋物線()與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;
(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.
【答案】(1);(2)當a=時,S四邊形BOCE最大,且最大值為,此時,點E坐標為(,);(3)P(﹣1,1)或(﹣1,﹣2).
【解析】
試題分析:(1)將A、B兩點的坐標代入拋物線的解析式中,即可求出二次函數的解析式;
(2)過E作EF⊥x軸于F.設E(a,)(﹣3<a<0),則EF=,BF=a+3,OF=﹣a,∴S四邊形BOCE==BFEF+(OC+EF)OF =,配方即可得出結論,當a=時,=大,即可得到點E的坐標;
(3)由P在拋物線的對稱軸上,設出P坐標為(﹣2,m),如圖所示,過A′作A′N⊥對稱軸于N,由旋轉的性質可證明△A′NP≌△PMA,得到A′N=PM=|m|,PN=AM=2,表示出A′坐標,將A′坐標代入拋物線解析式中求出相應m的值,即可確定出P的坐標.
試題解析:(1)∵拋物線()與x軸交于點A(1,0)和點B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求拋物線解析式為:;
(2)如圖2,過點E作EF⊥x軸于點F,設E(a,)(﹣3<a<0),∴EF=,BF=a+3,OF=﹣a,∴S四邊形BOCE==BFEF+(OC+EF)OF===,∴當a=時,S四邊形BOCE最大,且最大值為.此時,點E坐標為(,);
(3)∵拋物線的對稱軸為x=﹣1,點P在拋物線的對稱軸上,∴設P(﹣1,m),∵線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,如圖,∴PA=PA′,∠APA′=90°,如圖3,過A′作A′N⊥對稱軸于N,設對稱軸于x軸交于點M,∴∠NPA′+∠MPA=∠NA′P+∠NPA′=90°,∴∠NA′P=∠NPA,在△A′NP與△APM中,∵∠A′NP=∠AMP=90°,∠NA′P=∠MPA,PA′=AP,∴△A′NP≌△PMA,∴A′N=PM=|m|,PN=AM=2,∴A′(m﹣1,m+2),代入得:,解得:m=1,m=﹣2,∴P(﹣1,1),(﹣1,﹣2).
科目:初中數學 來源: 題型:
【題目】如圖,已知直線交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格圖中建立一直角坐標系,一條圓弧經過網格點A、B、C,請在網格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數;
(3)若扇形DAC是某一個圓錐的側面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為( )
A. 2 B. 8 C. 2 D. 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,半徑均為1個單位長度的半圓O1,O2,O3,… 組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2019秒時,點P的坐標是________________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為宣傳6月6日世界海洋日,某校八年級舉行了主題為“珍惜海洋資源,保護海洋生物多樣性”的知識競賽活動.為了解全年級500名學生此次競賽成績(百分制)的情況,隨機抽取了部分參賽學生的成績,整理并繪制出如下不完整的統計表(表1)和統計圖(如圖).請根據圖表信息解答以下問題:
(1)本次調查一共隨機抽取了個參賽學生的成績;
(2)表1中a= ;
(3)所抽取的參賽學生的成績的中位數落在的“組別”是 ;
(4)請你估計,該校九年級競賽成績達到90分以上(含90分)的學生約有多少人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)如圖,已知格點(小正方形的頂點):、、,若為格點,請直接畫出所有以、為勾股邊且對角線相等的勾股四邊形;
(2)如圖,將繞頂點按順時針方向旋轉,得到,連結、,,求證:,即四邊形是勾股四邊形;
(3)如圖,在四邊形中,為等邊三角形,,,,求長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點A(2,0)的直線l與y軸交于點B,tan∠OAB=,直線l上的點P位于y軸左側,且到y軸的距離為1.
(1)求直線l的表達式;
(2)若反比例函數的圖象經過點P,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近年來,青少年中的近視眼和肥胖案例日趨增多,人們普遍意識到健康的身體是學習的保障,所以體育活動越來越受重視.某商店分兩次購進跳繩和足球兩種商品進行銷售,每次購進同一種商品的進價相同,具體情況如下表所示.
購進數量(件) | 購進所需費用(元) | ||
跳繩 | 足球 | ||
第一次 | 30 | 40 | 3800 |
第二次 | 40 | 30 | 3200 |
(1)跳繩和足球兩種商品每件的進價分別是多少元?
(2)商店計劃用5300元的資金進行第三次進貨,共購進跳繩和足球兩種商品100件,其中要求足球的數量不少于跳繩的數量,有哪幾種進貨方案?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com