【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)A2,0)的直線ly軸交于點(diǎn)B,tanOAB=,直線l上的點(diǎn)P位于y軸左側(cè),且到y軸的距離為1

1)求直線l的表達(dá)式;

2)若反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)P,求m的值.

【答案】1;(2

【解析】試題分析:(1)已知A2,0anOAB==,可求得OB=1,所以B0,1),設(shè)直線l的表達(dá)式為,用待定系數(shù)法即可求得直線l的表達(dá)式;(2)根據(jù)直線l上的點(diǎn)P位于y軸左側(cè),且到y軸的距離為1可得點(diǎn)P的橫坐標(biāo)為-1,代入一次函數(shù)的解析式求得點(diǎn)P的縱坐標(biāo),把點(diǎn)P的坐標(biāo)代入反比例函數(shù)中,即可求得m的值.

試題解析:(1) ∵A2,0),∴OA=2.

tanOAB==,

∴OB="1." ∴B0,1.

設(shè)直線l的表達(dá)式為,則

.

直線l的表達(dá)式為.

(2) ∵點(diǎn)Py軸的距離為1,且點(diǎn)Py軸左側(cè),

點(diǎn)P的橫坐標(biāo)為-1.

點(diǎn)P在直線l上,

點(diǎn)P的縱坐標(biāo)為: .

點(diǎn)P的坐標(biāo)是.

反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)P,

.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷售甲、乙兩種糖果,購(gòu)買3千克甲種糖果和1千克乙種糖果共需44元,購(gòu)買1千克甲種糖果和2千克乙種糖果共需38元.

(1)求甲、乙兩種糖果的價(jià)格;

(2)若購(gòu)買甲、乙兩種糖果共20千克,且總價(jià)不超過(guò)240元,問(wèn)甲種糖果最少購(gòu)買多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)整數(shù)點(diǎn),其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根據(jù)這個(gè)規(guī)律探究可得,第100個(gè)點(diǎn)的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:

1m3nmn

2ax24ax+4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠AOB是平角,∠AOC=30°,BOD=60°,OM,ON分別是∠AOC,BOD的平分線,∠MON等于________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°

(1)請(qǐng)判斷ABCD的位置關(guān)系并說(shuō)明理由;

(2)如圖2,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問(wèn)∠BAE∠MCD是否存在確定的數(shù)量關(guān)系?并說(shuō)明理由;

(3)如圖3,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+∠CQP∠BAC有何數(shù)量關(guān)系?猜想結(jié)論并說(shuō)明理由.當(dāng)點(diǎn)Q在射線CD的反向延長(zhǎng)線上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+∠CQP∠BAC有何數(shù)量關(guān)系?直接寫出猜想結(jié)論,不需說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+c的頂點(diǎn)坐標(biāo)是(﹣1,3),與x軸的交點(diǎn)是(2,0),則另一個(gè)交點(diǎn)為( 。

A. (0,﹣3) B. (﹣3,0) C. (﹣4,0) D. (﹣2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點(diǎn),拋物線過(guò)A、B兩點(diǎn),且與x軸交于另一點(diǎn)C.

(1)求b、c的值;

(2)如圖1,點(diǎn)D為AC的中點(diǎn),點(diǎn)E在線段BD上,且BE=2ED,連接CE并延長(zhǎng)交拋物線于點(diǎn)M,求點(diǎn)M的坐標(biāo);

(3)將直線AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)15°后交y軸于點(diǎn)G,連接CG,如圖2,P為ACG內(nèi)以點(diǎn),連接PA、PC、PG,分別以AP、AG為邊,在他們的左側(cè)作等邊APR,等邊AGQ,連接QR

①求證:PG=RQ;

②求PA+PC+PG的最小值,并求出當(dāng)PA+PC+PG取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】比較大。憨3﹣2.(用“>”、“=”或“<”填空)

查看答案和解析>>

同步練習(xí)冊(cè)答案