【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為( )
A. 2 B. 8 C. 2 D. 2
【答案】C
【解析】連結BE,設⊙O的半徑為R,由OD⊥AB,根據(jù)垂徑定理得AC=BC=AB=4,在Rt△AOC中,OA=R,OC=R-CD=R-2,根據(jù)勾股定理得到(R-2)2+42=R2,解得R=5,則OC=3,由于OC為△ABE的中位線,則BE=2OC=6,再根據(jù)圓周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可計算出CE.
解:連結BE,設⊙O的半徑為R,如圖所示,
∵OD⊥AB,
∴AC=BC=AB=×8=4,
在Rt△AOC中,OA=R,OC=R-CD=R-2,
∵OC2+AC2=OA2,
∴(R-2)2+42=R2,解得R=5,
∴OC=5-2=3,
∴BE=2OC=6,
∵AE為直徑,
∴∠ABE=90°,
在Rt△BCE中, .
考點: 1.垂徑定理;2.勾股定理;3.三角形中位線定理;4.圓周角定理.
“點睛”本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】下列各數(shù)中互為相反數(shù)的是( )
A.+(—5)與—5
B.—(+5)與—5
C.—(—5)與+(—5)
D.—(+5)與—|—5|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】()如圖中,,請用直尺和圓規(guī)作一條直線,把分割成兩個等腰三角形(不寫作法,但須保留作圖痕跡).
()如圖中,的三個內角分別為,,,若,,,在上找一個點,使為等腰三角形,求出的長(可用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)在平面直角坐標系中,O為原點,直線y =-2x-1與y軸交于點A,與直線y =-x交于點B,點B關于原點的對稱點為點C.
(1)求過A,B,C三點的拋物線的解析式;
(2)P為拋物線上一點,它關于原點的對稱點為Q.
①當四邊形PBQC為菱形時,求點P的坐標;
②若點P的橫坐標為t(-1<t<1),當t為何值時,四邊形PBQC面積最大,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明鍛煉健身,從A地勻速步行到B地用時25分鐘.若返回時,發(fā)現(xiàn)走一小路可使A、B兩地間路程縮短200米,便抄小路以原速返回,結果比去時少用2.5分鐘.
(1)求返回時A、B兩地間的路程;
(2)若小明從A地步行到B地后,以跑步形式繼續(xù)前進到C地(整個鍛煉過程不休息).據(jù)測試,在他整個鍛煉過程的前30分鐘(含第30分鐘),步行平均每分鐘消耗熱量6卡路里,跑步平均每分鐘消耗熱量10卡路里;鍛煉超過30分鐘后,每多跑步1分鐘,多跑的總時間內平均每分鐘消耗的熱量就增加1卡路里.測試結果,在整個鍛煉過程中小明共消耗904卡路里熱量.問:小明從A地到C地共鍛煉多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是∠AOB的角平分線OC上一點,分別連接AP、BP,若再添加一個條件即可判定△AOP≌△BPO,則一下條件中:①∠A=∠B;②∠APO=∠BPO;③∠APC=∠BPC; ④AP=BP;⑤OA=OB.其中一定正確的是 (只需填序號即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖,已知⊙O上依次有A、B、C、D四個點,=,連接AB、AD、BD,弦AB不經(jīng)過圓心O,延長AB到E,使BE=AB,連接EC,F是EC的中點,連接BF.
(1)求證:BF=BD;
(2)設G是BD的中點,探索:在⊙O上是否存在點P(不同于點B),使得PG=PF?并說明PB與AE的位置關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com