如圖所示,AB是⊙O的直徑,⊙O交BC的中點(diǎn)于D,DE⊥AC于E,連接AD,則下列結(jié)論:
①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切線,
正確的有(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

D

解析試題分析:根據(jù)直徑所對(duì)的圓周角是直角推出∠ADB即可判斷①;求出OD∥AC,推出DE⊥OD,得出DE是圓O的切線即可判斷④;根據(jù)線段垂直平分線推出AC=AB,即可判斷③,根據(jù)切線的性質(zhì)即可判斷②.
∵AB是⊙O的直徑,
∴∠ADB=90°=∠ADC,
即AD⊥BC,①正確;
連接OD,
∵D為BC中點(diǎn),
∴BD=DC,
∵OA=OB,
∴DO∥AC,
∵DE⊥AC,
∴OD⊥DE,
∵OD是半徑,
∴DE是⊙O的切線,∴④正確;
∴∠ODA+∠EDA=90°,
∵∠ADB=∠ADO+∠ODB=90°,
∴∠EDA=∠ODB,
∵OD=OB,
∴∠B=∠ODB,
∴∠EDA=∠B,∴②正確;
∵D為BC中點(diǎn),AD⊥BC,
∴AC=AB,
∵OA=OB=AB,
∴OA= AC,∴③正確.
正確的有4個(gè),故選D.
考點(diǎn):本題考查了切線的判定,線段的垂直平分線,等腰三角形的性質(zhì)和判定,平行線的性質(zhì)
點(diǎn)評(píng):解答本題的關(guān)鍵是掌握好直徑所對(duì)的圓周角是直角,判定切線的方法,垂直平分線上的點(diǎn)到線段兩端的距離相等等性質(zhì),靈活運(yùn)用這些性質(zhì)進(jìn)行推理。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,AD是弦,∠DBC=∠A.
(1)求證:BC與⊙O相切;
(2)若OC∥AD,OC交BD于點(diǎn)E,BD=6,CE=4,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,AD是弦,∠DBC=∠A,OC⊥BD于點(diǎn)E.
(1)求證:BC是⊙O的切線;
(2)若BD=12,EC=10,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)P,CD=10cm,AP:PB=1:5,則⊙O的半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O直徑,OD⊥弦BC于點(diǎn)F,且交⊙O于點(diǎn)E,且∠AEC=∠ODB.
(1)判斷直線BD和⊙O的位置關(guān)系,并給出證明;
(2)當(dāng)AB=10,BC=8時(shí),求△DFB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,AB是⊙O直徑,∠D=35°,則∠BOC等于(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案