已知拋物線C1:y=x2+mx+1的頂點在x軸負半軸上.
(1)求拋物線C1的頂點坐標;
(2)把拋物線C1向下平移若干個單位后,得到拋物線C2,已知C2與x軸的交點為A(1,0)、B,求拋物線C2的函數(shù)解析式和B點的坐標;
(3)若P(n,y1)、Q(2,y2)是拋物線C1上的兩點,且y1>y2.直接寫出實數(shù)n的取值范圍.

解:(1)∵y=x2+mx+1的頂點在x軸負半軸上,
∴b2-4ac=m2-4=0,x=-<0,則m>0,
解得:m1=2,m2=-2(不合題意舍去),
∴y=x2+mx+1=x2+2x+1=(x+1)2
∴C1的頂點坐標為(-1,0);

(2)設(shè)C2的函數(shù)關(guān)系式為y=(x+1)2+k,
把A(1,0)代入上式得(1+1)2+k=0,得k=-4,
∴C2的函數(shù)關(guān)系式為y=(x+1)2-4.
∵拋物線的對稱軸為直線x=-1,與x軸的一個交點為A(1,0),
由對稱性可知,它與x軸的另一個交點B的坐標為(-3,0);

(3)當x≥-1時,y隨x的增大而增大,
當n≥-1時,
∵y1>y2
∴n>2.
當n<-1時,P(n,y1)的對稱點坐標為(-2-n,y1),且-2-n>-1,
∵y1>y2
∴-2-n>2,
∴n<-4.
綜上所述:n>2或n<-4.
分析:(1)由于二次函數(shù)y=x2+mx+1的頂點在x軸負半軸上,那么頂點的縱坐標為0,由此可以確定m.
(2)首先設(shè)所求拋物線解析式為y=(x+1)2+k,然后把A(1,0)代入即可求出k,也就求出了拋物線的解析式;
(3)由于圖象C1的對稱軸為直線x=-1,所以知道當x≥-1時,y隨x的增大而增大,然后討論n≥-1和n≤-1兩種情況,利用前面的結(jié)論即可得到實數(shù)n的取值范圍.
點評:此題考查了拋物線與x軸交點個數(shù)與其判別式的關(guān)系以及拋物線平移的性質(zhì)和拋物線的增減性,熟練掌握二次函數(shù)平移的性質(zhì)是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=-x2+2mx+1(m為常數(shù),且m≠0)的頂點為A,與y軸交于點C;拋物線C2與拋物線C1關(guān)于y軸對稱,其頂點為B.若點P是拋物線C1上的點,使得以A、B、C、P為頂點的四邊形為菱形,則m為( 。
A、±
3
B、
3
C、±
2
D、
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1:y=a(x-2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B的左邊),點A的橫坐標是-1.
(1)求P點坐標及a的值;
(2)如圖(1),拋物線C2與拋物線C1關(guān)于x軸對稱,將拋物線C2向左平移,平移后的拋物線記為C3,C3的頂點為M,當點P、M關(guān)于點A成中心對稱時,求C3的解析式y(tǒng)=a(x-h)2+k;
(3)如圖(2),點Q是x軸負半軸上一動點,將拋物線C1繞點Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點為N,與x軸相交于E、F兩點(點E在點F的左邊),當以點P、N、E為頂點的三角形是直角三角形時,求頂點N的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•房山區(qū)一模)已知拋物線C1:y=ax2+4ax+4a-5的頂點為P,與x軸相交于A、B兩點(點A在點B的左邊),點B的橫坐標是1.
(1)求拋物線的解析式和頂點P的坐標;
(2)將拋物線沿x軸翻折,再向右平移,平移后的拋物線C2的頂點為M,當點P、M關(guān)于點B成中心對稱時,求平移后的拋物線C2的解析式;
(3)直線y=-
35
x+m
與拋物線C1、C2的對稱軸分別交于點E、F,設(shè)由點E、P、F、M構(gòu)成的四邊形的面積為s,試用含m的代數(shù)式表示s.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=-x2+2mx+1(m為常數(shù),且m≠0)的頂點為A,與y軸交于點C;拋物線C2與拋物線C1關(guān)于y軸對稱,其頂點為B.若點P是拋物線C1上的點,使得以A、B、C、P為頂點的四邊形為菱形,則m的值為
±
3
±
3

查看答案和解析>>

同步練習(xí)冊答案