【題目】我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”,它是用八個全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3.若S1+S2+S3=15,則S2的值是_____.
【答案】5
【解析】
將正方形MNKT的面積設(shè)為x,將其余八個全等的三角形面積一個設(shè)為y,
∵正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,S1+S2+S3=15,
可得:S1=8y+x,S2=4y+x,S3=x,進而可得S1+S2+S3=3x+12y=15,解得3x+12y=10,x+4y==5,
因此S2=x+4y=.
將正方形MNKT的面積設(shè)為x,將其余八個全等的三角形面積一個設(shè)為y,
∵正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,S1+S2+S3=15,
∴得出S1=8y+x,S2=4y+x,S3=x,
∴S1+S2+S3=3x+12y=15,
故3x+12y=10,x+4y=,
所以S2=x+4y=.
故答案為:5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一個直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點,連接EF.
(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點A落在AB邊上的點D處,且使S四邊形ECBF=3S△EDF , 求AE的長;
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點A落在BC邊上的點M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;
②求EF的長;
(3)如圖③,若FE的延長線與BC的延長線交于點N,CN=1,CE= ,求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。
(1)作∠B的平分線BD,交AC于點D;作AB的中點E(要求:尺規(guī)作圖,保留作圖痕跡)
(2)連接DE,求證:△ADE≌△BDE。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖信息,L1為走私船,L2為我公安快艇,航行時路程與時間的函數(shù)圖象,問
(1)在剛出發(fā)時我公安快艇距走私船多少海里?
(2)計算走私船與公安快艇的速度分別是多少?
(3)寫出L1,L2的解析式
(4)問6分鐘時兩艇相距幾海里.
(5)猜想,公安快艇能否追上走私船,若能追上,那么在幾分鐘追上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,設(shè)正方體ABCD-A1B1C1D1的棱長為1,黑甲殼蟲從點A出發(fā),白甲殼蟲從點C1出發(fā),它們以相同的速度分別沿棱向前爬行.黑甲殼蟲爬行的路線是:AA1→A1D1→D1C1→C1C→CB→BA→AA1→A1D1…,白甲殼蟲爬行的路線是:C1C→CB→BB1→B1C1→C1C→CB…,那么當黑、白兩個甲殼蟲各爬行完第2018條棱分別停止在所到的正方體頂點處時,它們之間的最短路程的平方是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=ax2+bx+c分別交x軸于A(4,0)、B(﹣1,0),交y軸于點C(0,﹣3),過點A的直線y=﹣ x+3交拋物線于另一點D.
(1)求拋物線的解析式及點D的坐標;
(2)若點P位x軸上的一個動點,點Q在線段AC上,且Q到x軸的距離為 ,連接PC、PQ,當△PCQ的周長最小時,求出點P的坐標;
(3)如圖2,在(2)的結(jié)論下,連接PD,在平面內(nèi)是否存在△A1P1D1 , 使△A1P1D1≌△APD(點A1、P1、D1的對應(yīng)點分別是A、P、D,A1P1平行于y軸,點P1在點A1上方),且△A1P1D1的兩個頂點恰好落在拋物線上?若存在,請求出點A1的橫坐標m,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,E為BC上的一點,BE=2,F(xiàn)為AB上的一點,AF=3,P為AC上一點,則PF+PE的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中畫出直線y=x+1的圖象,并根據(jù)圖象回答下列問題:
(1)寫出直線與x軸、y軸的交點坐標;
(2)求出直線與坐標軸圍成的三角形的面積;
(3)若直線y=kx+b與直線y=x+1關(guān)于y軸對稱,求k,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com