【題目】一個不透明的袋里裝有2個紅球,1個白球,1個黃球,它們除顏色外其余都相同.
(1)求從袋中摸出一個球是黃球的概率.
(2)摸出一個球,記下顏色后不放回,攪拌均勻,再摸出1個球,求兩次摸出的球恰好顏色不同的概率(要求畫樹狀圖或列表).
【答案】
(1)解:從袋中摸出一個球是黃球的概率= =
(2)解:畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中兩次摸出的球恰好顏色不同的結(jié)果數(shù)為10,
所以兩次摸出的球恰好顏色不同的概率= =
【解析】(1)直接利用概率公式求解;(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出兩次摸出的球恰好顏色不同的結(jié)果數(shù),然后根據(jù)概率公式求解.
【考點(diǎn)精析】關(guān)于本題考查的列表法與樹狀圖法,需要了解當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC、BD相交于點(diǎn)O,分別作BE⊥AC于E,DF⊥AC于F,已知OE=OF,CE=AF.
(1)求證:△BOE≌△DOF;
(2)若OA= BD,則四邊形ABCD是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 (m>0)與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,C是拋物線上一個動點(diǎn)(點(diǎn)C與點(diǎn)A,B不重合),D是OC的中點(diǎn),連結(jié)BD并延長,交AC于點(diǎn)E,則 的值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A(-3,0)、B(1,0)、C(-2,1),交y軸于點(diǎn)M.
(1)求拋物線的表達(dá)式;
(2)D為拋物線在第二象限部分上的一點(diǎn),作DE垂直x軸于點(diǎn)E,交線段AM于點(diǎn)F,求線段DF長度的最大值,并求此時點(diǎn)D的坐標(biāo);
(3)拋物線上是否存在一點(diǎn)P,作PN垂直x軸于點(diǎn)N,使得以點(diǎn)P、A.N為頂點(diǎn)的三角形與△MAO相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+6x交x軸正半軸于點(diǎn)A,頂點(diǎn)為M,對稱軸MB交x軸于點(diǎn)B.過點(diǎn)C(2,0)作射線CD交MB于點(diǎn)D(D在x軸上方),OE∥CD交MB于點(diǎn)E,EF∥x軸交CD于點(diǎn)F,作直線MF.
(1)求點(diǎn)A,M的坐標(biāo).
(2)當(dāng)BD為何值時,點(diǎn)F恰好落在該拋物線上?
(3)當(dāng)BD=1時
求直線MF的解析式,并判斷點(diǎn)A是否落在該直線上.
(4)②延長OE交FM于點(diǎn)G,取CF中點(diǎn)P,連結(jié)PG,△FPG,四邊形DEGP,四邊形OCDE的面積分別記為S1 , S2 , S3 , 則S1:S2:S3= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖①,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,點(diǎn)P為線段BC上的一動點(diǎn)(不運(yùn)動到C,B兩點(diǎn))過點(diǎn)P作PQ⊥BC交AB于點(diǎn)Q,在AC邊上取一點(diǎn)D,使QD=QP,連結(jié)DP,設(shè)CP=x
(1)求QP的長,用含x的代數(shù)式表示.
(2)當(dāng)x為何值時,△DPQ為直角三角形?
(3)記點(diǎn)D關(guān)于直線PQ的對稱點(diǎn)為點(diǎn)D′.
①當(dāng)點(diǎn)D′落在AB邊上時,求x的值;
②在①的條件下,如圖②,將此時的△DPQ繞點(diǎn)P順時針旋轉(zhuǎn)一個角度α(0°<α<∠DPB),在旋轉(zhuǎn)過程中,設(shè)DP所在的直線與直線AB交于點(diǎn)M,與直線AC交于點(diǎn)N,是否存在這樣的M,N兩點(diǎn),使△AMN為等腰三角形?若存在,求出此時AN的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC,BD并于點(diǎn)O,經(jīng)過點(diǎn)O的直線交AB于E,交CD于F.
(1)求證:OE=OF.
(2)連接DE,BF,則EF與BD滿足什么條件時,四邊形DEBF是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,A(﹣4,0),B(0,2),連結(jié)AB并延長到C,連結(jié)CO,若△COB∽△CAO,則點(diǎn)C的坐標(biāo)為( )
A.(1, )
B.( , )
C.( ,2 )
D.( ,2 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下面各題
(1)計算: +(﹣1)2﹣4cos30°﹣| |
(2)解不等式組 ,并將它的解集在下面的數(shù)軸上表示出來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com