【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=BAC,連接CE

1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=______度;
2)設∠BAC=α,∠BCE=β.
①如圖2,當點D在線段BC上移動,則α,β之間有怎樣的數(shù)量關系?請說明理由;
②當點D在直線BC上移動,則α,β之間有怎樣的數(shù)量關系?請直接寫出你的結論.

【答案】1)900;(2)①α+β=180°;當點D在射線BC上時,α+β=180°;當點D在射線BC的反向延長線上時,α=β.

【解析】

1)問要求∠BCE的度數(shù),可將它轉化成與已知角有關的聯(lián)系,根據(jù)已知條件和全等三角形的判定定理,得出△ABD≌△ACE,再根據(jù)全等三角形中對應角相等,最后根據(jù)直角三角形的性質可得出結論;(2)問在第(1)問的基礎上,將α+β轉化成三角形的內角和;(3)問是第(1)問和第(2)問的拓展和延伸,要注意分析兩種情況.

190°
理由:∵∠BAC=DAE
∴∠BAC-DAC=DAE-DAC
即∠BAD=CAE
在△ABD與△ACE中,

∴△ABD≌△ACESAS),
∴∠B=ACE
∴∠B+ACB=ACE+ACB,
∴∠BCE=B+ACB
又∵∠BAC=90°
∴∠BCE=90°;

2)①α+β=180°


理由:∵∠BAC=DAE,
∴∠BAD+DAC=EAC+DAC
即∠BAD=CAE
在△ABD與△ACE中,


∴△ABD≌△ACESAS),
∴∠B=ACE
∴∠B+ACB=ACE+ACB
∴∠B+ACB=β,
α+B+ACB=180°,
α+β=180°
②當點D在射線BC上時,α+β=180°
理由:∵∠BAC=DAE,
∴∠BAD=CAE
∵在△ABD和△ACE


∴△ABD≌△ACESAS),
∴∠ABD=ACE,
∵∠BAC+ABD+BCA=180°,
∴∠BAC+BCE=BAC+BCA+ACE=BAC+BCA+B=180°
α+β=180°;

當點D在射線BC的反向延長線上時,α=β


理由:∵∠DAE=BAC
∴∠DAB=EAC,
∵在△ADB和△AEC中,

∴△ADB≌△AECSAS),
∴∠ABD=ACE,
∵∠ABD=BAC+ACB,∠ACE=BCE+ACB,
∴∠BAC=BCE
α=β

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場要經營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件.

(1)寫出商場銷售這種工具,每天所得的銷售利潤w()與銷售單價x()之間的函數(shù)關系式;

(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;

(3)商場的營銷部結合上述情況,提出了A、B兩種營銷方案:

方案A:該文具的銷售單價高于進價且不超過30元;

方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元.

請比較哪種方案的最大利潤更高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象與軸交于兩點(右),與軸交于

)求的值.

)若為二次函數(shù)圖象的頂點,求證:

)若為二次函數(shù)圖象上一點,且,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四名同學進行一次乒乓球單打比賽,要從中選兩位同學打第一場比賽.

(1)請用樹狀圖或列表法求恰好選中甲、乙兩位同學的概率;

(2)請利用若干個除顏色外其余都相同的乒乓球,設計一個摸球的實驗(至少摸兩次),

并根據(jù)該實驗寫出一個發(fā)生概率與(1)所求概率相同的事件.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為增加體育館觀眾坐席數(shù)量,決定對體育館進行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD5米.如果按照施工方提供的設計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG37°.若學校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD2.5),請問施工方提供的設計方案是否滿足安全要求呢?請說明理由.(參考數(shù)據(jù):sin37°,tan37°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8BC4,將矩形沿AC折疊,點D落在點D′處,則重疊部分△AFC的面積為(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有以下結論:;;;其中所有正確結論的序號是( )

A. ①② B. ①③④ C. ①②③⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(﹣10)、B3,0)、C3,2

1)求證:BCx軸;

2)求△ABC的面積;

3)若在y軸上有一點P,使SABP2SABC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示方格紙中,每個小正方形的邊長均為1,點A,點B,點C在小正方形的頂點上.

(1)畫出△ABC中邊BC上的高AD

(2)畫出△ABC中邊AC上的中線BE;

(3)直接寫出△ABE的面積為______.

查看答案和解析>>

同步練習冊答案