分析 (1)利用“邊邊邊”證明△BCE和△BDE全等,根據(jù)全等三角形對應(yīng)角相等可得∠C=∠BDE,再根據(jù)垂直的定義證明即可;
(2)根據(jù)全等三角形對應(yīng)角相等可得∠CBE=∠DBE,根據(jù)等邊對等角可得∠DBE=∠A,然后根據(jù)直角三角形兩銳角互余列式計(jì)算即可得解.
解答 (1)證明:在△BCE和△BDE中,
$\left\{\begin{array}{l}{BC=BD}\\{DE=CE}\\{BE=BE}\end{array}\right.$,
∴△BCE≌△BDE(SSS),
∴∠C=∠BDE,
∵DE⊥AB,
∴∠BDE=90°,
∴∠C=90°;
(2)解:∵△BCE≌△BDE,
∴∠CBE=∠DBE,
∵點(diǎn)D是AB的中點(diǎn),DE⊥AB,
∴AE=BE,
∴∠DBE=∠A,
∴∠ABC=2∠A,
在Rt△ABC中,∠A+∠ABC=90°,
∴∠A+2∠A=90°,
解得∠A=30°.
點(diǎn)評 本題考查了全等三角形的判定與性質(zhì),等邊對等角的性質(zhì),直角三角形兩銳角互余的性質(zhì),熟練掌握三角形全等的判斷方法并準(zhǔn)確確定出全等三角形是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 50° | C. | 60° | D. | 130° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 35° | B. | 45° | C. | 55° | D. | 65° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com