如圖,已知拋物線y=x2+bx+c經(jīng)過點(diǎn)(0,﹣3),請(qǐng)你確定一個(gè)b的值,使該拋物線與x軸的一個(gè)交點(diǎn)在(1,0)和(3,0)之間.你確定的b的值是 .
在﹣2<b<2范圍內(nèi)的任何一個(gè)數(shù).
解析試題分析:把(0,﹣3)代入拋物線的解析式求出c的值,在(1,0)和(3,0)之間取一個(gè)點(diǎn),分別把x=1和x=3它的坐標(biāo)代入解析式即可得出不等式組,求出答案即可.
把(0,﹣3)代入拋物線的解析式得:c=﹣3,
∴y=x2+bx﹣3,
∵使該拋物線與x軸的一個(gè)交點(diǎn)在(1,0)和(3,0)之間,
∴把x=1代入y=x2+bx﹣3得:y=1+b﹣3<0
把x=3代入y=x2+bx﹣3得:y=9+3b﹣3>0,
∴﹣2<b<2,
即在﹣2<b<2范圍內(nèi)的任何一個(gè)數(shù)都符合,
故答案為:在﹣2<b<2范圍內(nèi)的任何一個(gè)數(shù).
考點(diǎn): 拋物線與x軸的交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
已知x=2m+n+2和x=m+2n時(shí),多項(xiàng)式x2+4x+6的值相等,且m﹣n+2≠0,則當(dāng)x=3(m+n+1)時(shí),多項(xiàng)式x2+4x+6的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
將二次函數(shù)的圖像向左平移2個(gè)單位再向下平移4個(gè)單位,所得函數(shù)表達(dá)式是,我們來解釋一下其中的原因:不妨設(shè)平移前圖像上任意一點(diǎn)P經(jīng)過平移后得到點(diǎn)P’,且點(diǎn)P’的坐標(biāo)為,那么P’點(diǎn)反之向右平移2個(gè)單位,再向上平移4個(gè)單位得到點(diǎn),由于點(diǎn)P是二次函數(shù)的圖像上的點(diǎn),于是把點(diǎn)P(x+2,y+4)的坐標(biāo)代入再進(jìn)行整理就得到.類似的,我們對(duì)函數(shù)的圖像進(jìn)行平移:先向右平移1個(gè)單位,再向上平移3個(gè)單位,所得圖像的函數(shù)表達(dá)式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
已知二次函數(shù)的圖像過點(diǎn)(1,0)和(,0),且,現(xiàn)在有5個(gè)判斷:(1) (2) (3) (4) (5),請(qǐng)把你認(rèn)為判斷正確的序號(hào)寫出來 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
記方程的兩實(shí)數(shù)根為x1、x2,在平面直角坐標(biāo)系中有三點(diǎn)A、B、C,它們的坐標(biāo)分別為A (x1,0),B(x2,0),C(0,12),若以此三點(diǎn)為頂點(diǎn)構(gòu)成的三角形面積為6,則實(shí)數(shù)k的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com