在平面直角坐標(biāo)系中,把拋物線向上平移3個(gè)單位,再向左平移1個(gè)單位,則所得拋物線的解析式是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)(0,﹣3),請(qǐng)你確定一個(gè)b的值,使該拋物線與x軸的一個(gè)交點(diǎn)在(1,0)和(3,0)之間.你確定的b的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,在邊長(zhǎng)10cm為的正方形ABCD中,P為AB邊上任意一點(diǎn)(P不與A、B兩點(diǎn)重合),連結(jié)DP,過(guò)點(diǎn)P作PE⊥DP,垂足為P,交BC于點(diǎn)E,則BE的最大長(zhǎng)度為 cm。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線y=x2﹣(k+2)x+和直線y=(k+1)x+(k+1)2.
(1)求證:無(wú)論k取何實(shí)數(shù)值,拋物線總與x軸有兩個(gè)不同的交點(diǎn);
(2)拋物線于x軸交于點(diǎn)A、B,直線與x軸交于點(diǎn)C,設(shè)A、B、C三點(diǎn)的橫坐標(biāo)分別是x1、x2、x3,求x1•x2•x3的最大值;
(3)如果拋物線與x軸的交點(diǎn)A、B在原點(diǎn)的右邊,直線與x軸的交點(diǎn)C在原點(diǎn)的左邊,又拋物線、直線分別交y軸于點(diǎn)D、E,直線AD交直線CE于點(diǎn)G(如圖),且CA•GE=CG•AB,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
在平面直角坐標(biāo)系xOy中,直線y=kx(k為常數(shù))與拋物線交于A,B兩點(diǎn),且A點(diǎn)在y軸左側(cè),P點(diǎn)的坐標(biāo)為(0,﹣4),連接PA,PB.有以下說(shuō)法:
①PO2=PA•PB;
②當(dāng)k>0時(shí),(PA+AO)(PB﹣BO)的值隨k的增大而增大;
③當(dāng)時(shí),BP2=BO•BA;
④△PAB面積的最小值為.
其中正確的是 (寫(xiě)出所有正確說(shuō)法的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,拋物線的頂點(diǎn)為P(-2,2)與y軸交于點(diǎn)A(0,3),若平移該拋物線使其頂P沿直線移動(dòng)到點(diǎn),點(diǎn)A的對(duì)應(yīng)點(diǎn)為,則拋物線上PA段掃過(guò)的區(qū)域(陰影部分)的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com