【題目】我們知道,演繹推理的過(guò)程稱為證明,證明的出發(fā)點(diǎn)和依據(jù)是基本事實(shí).證明三角形全等的基本事實(shí)有:兩邊及其夾角分別相等的兩個(gè)三角形全等,兩角及其夾邊分別相等的兩個(gè)三角形全等,三邊分別相等的兩個(gè)三角形全等.

1)請(qǐng)選擇利用以上基本事實(shí)和三角形內(nèi)角和定理,結(jié)合下列圖形,證明:兩角分別相等且其中一組等角的對(duì)邊相等的兩個(gè)三角形全等.

2)把三角形的三條邊和三個(gè)角統(tǒng)稱為三角形的六個(gè)元素.如果兩個(gè)三角形有四對(duì)對(duì)應(yīng)元素相等,這兩個(gè)三角形一定全等嗎?請(qǐng)說(shuō)明理由.

【答案】1)證明見詳解;(2)兩個(gè)三角形一定全等,理由見詳解.

【解析】

1)通過(guò)兩角相等和三角形內(nèi)角和定理可知第三個(gè)角也相等,然后利用兩角及夾邊分別相等即可證明兩三角形全等;

2)四對(duì)對(duì)應(yīng)元素相等,可分三種情況: 給出三條邊和任一角對(duì)應(yīng)相等;給出兩條邊和兩個(gè)角對(duì)應(yīng)相等; 給出三個(gè)角和任一邊對(duì)應(yīng)相等,分情況進(jìn)行討論即可.

1)已知: 證明:

證明:∵ ,

又∵

中,

2)兩個(gè)三角形一定全等,理由如下:

如果給出三條邊和任一角對(duì)應(yīng)相等,可用SSS證明兩三角形全等;

如果給出兩條邊和兩個(gè)角對(duì)應(yīng)相等,則可用ASASAS證明兩三角形全等;

如果給出三個(gè)角和任一邊對(duì)應(yīng)相等,可以ASA證明兩三角形全等.

所以兩個(gè)三角形有四對(duì)對(duì)應(yīng)元素相等,這兩個(gè)三角形一定全等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 RtABC 中,∠BAC=90°,AB=6,AC=8,D AC 上一點(diǎn),將ABD 沿 BD 折疊,使點(diǎn) A 恰好落在 BC 上的 E 處,則折痕 BD 的長(zhǎng)是(

A.5B.C.3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:已知,如圖(1),在面積為S△ABC中, BC=a,AC=b, AB=c,內(nèi)切圓O的半徑為r連接OA、OB、OC,△ABC被劃分為三個(gè)小三角形.

(1)類比推理:若面積為S的四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),如圖(2),各邊長(zhǎng)分別為AB=aBC=b,CD=cAD=d,求四邊形的內(nèi)切圓半徑r;

(2)理解應(yīng)用:如圖(3),在等腰梯形ABCD中,AB∥DCAB=21,CD=11,AD=13,⊙O1與⊙O2分別為△ABD與△BCD的內(nèi)切圓,設(shè)它們的半徑分別為r1r2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李從如圖所示的二次函數(shù)y=ax2+bx+ca≠0)的圖象中,觀察得出了下面四條信息:①b2﹣4ac0;②c1③ab0;④a﹣b+c0.你認(rèn)為其中正確的有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知x1=3是關(guān)于x的一元二次方程x2-4xc=0的一個(gè)根,求c的值和方程的另一個(gè)根.

(2)如圖,在矩形ABCD中.點(diǎn)O在邊AB上,∠AOC=BOD.求證:AO=OB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,以斜邊AB上一點(diǎn)O為圓心,OB為半徑作⊙O,交AC于點(diǎn)E,交AB于點(diǎn)D,且∠BEC=BDE.

(1)求證:AC是⊙O的切線;

(2)連接OCBE于點(diǎn)F,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】9分)某校在基地參加社會(huì)實(shí)踐話動(dòng)中,帶隊(duì)老師考問(wèn)學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長(zhǎng)),另外三邊用總長(zhǎng)69米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的而積最大?下面是兩位學(xué)生爭(zhēng)議的情境:

請(qǐng)根據(jù)上面的信息,解決問(wèn)題:

1)設(shè)AB=x米(x0),試用含x的代數(shù)式表示BC的長(zhǎng);

2)請(qǐng)你判斷誰(shuí)的說(shuō)法正確,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知B點(diǎn)坐標(biāo)為(4,0).

1)求拋物線的解析式;

2)試探究ABC的外接圓的圓心位置,并求出圓心坐標(biāo);

3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),求MBC的面積的最大值,并求出此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C90°,∠B30°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交ABAC于點(diǎn)MN,再分別以MN為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是( 。

AD是∠BAC的平分線;②∠ADC60°;③點(diǎn)DAB的中垂線上.

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案