精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在 RtABC 中,∠BAC=90°,AB=6,AC=8,D AC 上一點,將ABD 沿 BD 折疊,使點 A 恰好落在 BC 上的 E 處,則折痕 BD 的長是(

A.5B.C.3 D.

【答案】C

【解析】

根據勾股定理易求BC=10.根據折疊的性質有AB=BE,AD=DE,∠A=DEB=90°,
CDE中,設AD=DE=x,則CD=8-xEC=10-6=4.根據勾股定理可求x,ADE中,運用勾股定理求BD

解:∵∠A=90°AB=6,AC=8,
BC=10
根據折疊的性質,AB=BE,AD=DE,∠A=DEB=90°
EC=10-6=4
CDE中,設AD=DE=x,則CD=8-x,根據勾股定理得
8-x2=x2+42
解得x=3
DE=3
BD==3,故選C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖1,直線x軸、y軸分別交于點AC兩點,點B的橫坐標為2.

圖1 圖2

(1)求AC兩點的坐標和拋物線的函數關系式;

(2)點D是直線AC上方拋物線上任意一點,P為線段AC上一點,且SPCD=2SPAD ,求點P的坐標;

(3)如圖2,另有一條直線y=-x與直線AC交于點MN為線段OA上一點,∠AMN=∠AOM.點Qx軸負半軸上一點,且點Q到直線MN和直線MO的距離相等,求點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點A(,1)在射線OM上,點B(,3)在射線ON上,以AB為直角邊作RtABA1,以BA1為直角邊作第二個RtBA1B1,以A1B1為直角邊作第三個RtA1B1A2,依此規(guī)律,得到RtB2018A2019B2019,則點B2019的縱坐標為________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與軸的一個交點坐標為(1,0),其部分圖象如圖所示,下列結論:

4ac<b2 方程ax2+bx+c=0的兩個根是; 3a+c>0; y>0時,x的取值范圍是-1≤x<3 x<0時,yx增大而增大;

其中結論正確有__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點DE分別在邊AB、AC上,且AD=AE,連接BECD,交于點F

(1)判斷∠ABE與∠ACD的數量關系,并說明理由;

(2)求證:過點AF的直線垂直平分線段BC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°B=60°,BC=2,A′B′C′可以由ABC繞點C順時針旋轉得到,其中點A′與點A是對應點,點B′與點B是對應點,連接AB′,且AB′、A′在同一條直線上,則AA′的長為( 。

A. 4 B. 6 C. 3 D. 3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(本小題6分)為了參加中考體育測試,甲,乙,丙三位同學進行足球傳球訓練。球從一個人

腳下隨機傳到另一個人腳下,且每位傳球人傳球給其余兩人的機會是均等的,由甲開始傳球,共傳三次。

1)求請用樹狀圖列舉出三次傳球的所有可能情況;

2)傳球三次后,球回到甲腳下的概率;

3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】國慶節(jié)期間,某文具店平均每天可賣出300張賀卡,賣出1張賀卡的利潤是1元.經調查發(fā)現,零售單價每降0.1元,每天可多賣出100張賀卡.為了使每天獲取的利潤更多,該店決定把零售單價下降元.

(1)零售單價下降元后,該店平均每天可賣出___________張賀卡,每張賀卡的利潤為___________元;(用含的式子表示)

(2)在不考慮其他因素的條件下,該店希望每天賣賀卡獲得的利潤是420元,并且能賣出更多的賀卡贏得市場,應定為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們知道,演繹推理的過程稱為證明,證明的出發(fā)點和依據是基本事實.證明三角形全等的基本事實有:兩邊及其夾角分別相等的兩個三角形全等,兩角及其夾邊分別相等的兩個三角形全等,三邊分別相等的兩個三角形全等.

1)請選擇利用以上基本事實和三角形內角和定理,結合下列圖形,證明:兩角分別相等且其中一組等角的對邊相等的兩個三角形全等.

2)把三角形的三條邊和三個角統(tǒng)稱為三角形的六個元素.如果兩個三角形有四對對應元素相等,這兩個三角形一定全等嗎?請說明理由.

查看答案和解析>>

同步練習冊答案