【題目】某商場按定價銷售某種商品時,每件可獲利100元;按定價的八折銷售該商品5件與將定價降低50元銷售該商品6件所獲利潤相等.

(1)該商品進價、定價分別是多少?

(2)該商場用10000元的總金額購進該商品,并在五一節(jié)期間以定價的七折優(yōu)惠全部售出,在每售出一件該商品時,均捐獻元給社會福利事業(yè),該商場為能獲得不低于3000元的利潤,求的最大值.

【答案】(1)該商品進價為200元/件,進價為100元/件;(2)10.

【解析】

(1)設(shè)該商品定價為/件,進價為/件,由題意得,解方程組可得;(2)由題意得.

(1)解法一:設(shè)該商品定價為/件,進價為/件,由題意得

解得:

答:該商品進價為200/件,進價為100/.

解法二:設(shè)該商品進價為/件,則定價為/件,由題意得

解得:

當(dāng)時,

答:該商品進價為200/件進價為100/.

(2)解:由題意得

解得:

的最大值為10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,點D在雙曲線上,AD垂直x軸,垂足為A,點CAD上,CB平行于x軸交雙曲線于點B,直線ABy軸相交于點F,已知ACAD13,點C的坐標(biāo)為(32).

1)求反比例函數(shù)和一次函數(shù)的表達式;

2)直接寫出反比例函數(shù)值大于一次函數(shù)值時自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明步行從家去火車站,走到6分鐘時,以同樣的速度回家取物品,然后從家乘出租車趕往火車站,結(jié)果比預(yù)計步行時間提前了3分鐘.小元離家路程S(米)與時間t(分鐘)之間的函數(shù)圖象如圖,那么從家到火車站路程是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,對角線交于點,以,為鄰邊作平行四邊形,連接

1)求證:四邊形是菱形;

2)若,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B為定點,定直線l//AB,Pl上一動點.點M,N分別為PA,PB的中點,對于下列各值:

線段MN的長;

②△PAB的周長;

③△PMN的面積;

直線MN,AB之間的距離;

⑤∠APB的大。

其中會隨點P的移動而變化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c經(jīng)過點A(0,6),點B(1,3),直線l1:y=kx(k≠0),直線l2:y=-x-2,直線l1經(jīng)過拋物線y=x2+bx+c的頂點P,且l1與l2相交于點C,直線l2與x軸、y軸分別交于點D、E.若把拋物線上下平移,使拋物線的頂點在直線l2上(此時拋物線的頂點記為M),再把拋物線左右平移,使拋物線的頂點在直線l1上(此時拋物線的頂點記為N).

(1)求拋物y=x2+bx+c線的解析式.

(2)判斷以點N為圓心,半徑長為4的圓與直線l2的位置關(guān)系,并說明理由.

(3)設(shè)點F、H在直線l1上(點H在點F的下方),當(dāng)△MHF與△OAB相似時,求點F、H的坐標(biāo)(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于,對稱軸是直線,與軸交于點.若點,同時從點出發(fā),都以每秒個單位長度的速度分別沿,邊運動.

1)求該二次函數(shù)的解析式及點的坐標(biāo),與軸的另一個交點的坐標(biāo).

2)當(dāng),運動到秒時,沿翻折,點恰好落在軸上點處,請判定此時四邊形的形狀,并求出點坐標(biāo).

3)當(dāng)點運動到對稱軸與的交點時,點往回運動,同時點倍的速度繼續(xù)沿運動,在整個運動過程中,以點,,為頂點的三角形面積是否存在最大值?若存在,請求出這個最大值;若不存在,請說明理由.

4)在段的拋物線上有一點到線段的距離最大,請求出這個最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

1)求證這個二次函數(shù)的圖像一定與x軸有交點;

2)若這個二次函數(shù)有最大值0,求m的值;

3)我們定義:若二次函數(shù)的圖像與x軸正半軸的兩個交點的橫坐標(biāo),滿足23,則稱這個二次函數(shù)與x軸有兩個“黃金交點”.如果二次函數(shù)x軸有兩個“黃金交點”,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC于點D,交CA的延長線于點E,過點DDHAC,垂足為點H,連接DE,交AB于點F

1)求證:DH是⊙O的切線;

2)若⊙O的半徑為4AE=FE時,求的長(結(jié)果保留π);

查看答案和解析>>

同步練習(xí)冊答案