【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A、B兩點,點A的坐標為(2,3n),點B的坐標為(5n+2,1).
(1)求反比例函數(shù)與一次函數(shù)的表達式;
(2)將一次函數(shù)y=kx+b的圖象沿y軸向下平移a個單位,使平移后的圖象與反比例函數(shù)y= 的圖象有且只有一個交點,求a的值;
(3)點E為y軸上一個動點,若S△AEB=5,則點E的坐標為________.
【答案】(0,6)或(0,8)
【解析】試題分析:(1)把點A的坐標、點B的坐標代入y=,得出m、n的值,得出點A、B的坐標,再把A、B的坐標代入直線y=kx+b,求出k、b的值,從而得出一次函數(shù)的解析式;
(2)設平移后的一次函數(shù)的解析式為y=-x+7-a,由一次函數(shù)解析式和反比例函數(shù)解析式聯(lián)立組成二元方程組,消去y,得到關(guān)于x的一元二次方程,令△=0即可求出a的值;
(3)設點E的坐標為(0,m),連接AE,BE,先求出直線與y軸交點K的坐標(0,7),得出KE=|m-7|,根據(jù)S△AEB=S△BEP-S△AEP=5,求出m的值,從而得出點E的坐標.
試題解析:
(1)解:∵A、B在反比例函數(shù)的圖象上,
∴2×3n=(5n+2)×1=m,
∴n=2,m=12,
∴A(2,6),B(12,1),
∵一次函數(shù)y=kx+b的圖象經(jīng)過A、B兩點,
∴ ,
解得 ,
∴反比例函數(shù)與一次函數(shù)的表達式分別為y=,y=﹣x+7.
(2)解:設平移后的一次函數(shù)的解析式為y=﹣x+7﹣a,
由,消去y得到x2+(2a﹣14)x+24=0,
由題意,△=0,(21a﹣14)2﹣4×24=0,
解得a=7±2.
(3)設直線AB交y軸于K,則K(0,7),設E(0,m),
由題意,KE=|m﹣7|.
∵S△AEB=S△BEK﹣S△AEK=5,
∴×|m﹣7|×(12﹣2)=5.
∴|m﹣7|=1.
∴m1=6,m2=8.
∴點E的坐標為(0,6)或(0,8).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B在反比例函數(shù)y=(x>0)的圖象上,點C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,長方形 的四個頂點分別為 .對該長方形及其內(nèi)部的每一個點都進行如下操作:把每個點的橫坐標都乘以同一個實數(shù) ,縱坐標都乘以3,再將得到的點向右平移 ( 同一個實數(shù),縱坐標都乘以3,再將得到的點向右平移 個單位,向下平移2個單位,得到長方形 及其內(nèi)部的點,其中點 的對應點分別為部的點.
(1)點的橫坐標為(用含,的式子表示);
(2)點的坐標為 ,點的坐標為 ,
①求,的值;
②若對長方形內(nèi)部(不包括邊界)的點 進行上述操作后,得到的對應點 仍然在長方形內(nèi)部(不包括邊界),求少的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個多邊形的各邊都相等且各角也都相等,那么這樣的多邊形叫做正多邊形,如正三角形就是等邊三角形,正四邊形就是正方形,如下圖,就是一組正多邊形,
(1)觀察上面每個正多邊形中的∠α,填寫下表:
正多邊形邊數(shù) | 3 | 4 | 5 | 6 | …… | n |
∠α的度數(shù) | ______° | _____° | ______° | ______° | …… | _____° |
(2)根據(jù)規(guī)律,計算正八邊形中的∠α的度數(shù).
(3)是否存在正n邊形使得∠α=21°?若存在,請求出n的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索歸納:
(1)如圖1,已知△ABC為直角三角形,∠A=90°,若沿圖中虛線剪去∠A,則∠1+∠2等于______;
(2)如圖2,已知△ABC中,∠A=40°,剪去∠A后成四邊形,則∠1+∠2=______;
(3)如圖2,根據(jù)(1)與(2)的求解過程,請你歸納猜想∠1+∠2與∠A的關(guān)系是______;
(4)如圖3,若沒有剪掉,而是把它折成如圖3形狀,試探究∠1+∠2與∠A的關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題:探究函數(shù)的圖象與性質(zhì).
小華根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.下面是小華的探究過程,請補充完整:
在函數(shù)中,自變量可以是任意實數(shù);
(1)下表是與的幾組對應值.
… | -3 | -2 | -1 | 0 | 1 | 2 | 3 | … | |
… | 1 | 0 | -1 | -2 | -1 | 0 | … |
①______;
②若,為該函數(shù)圖象上不同的兩點,則______;
(2)如圖,在平面直角坐標系中,描出以上表中各對對應值為坐標的點.并根據(jù)描出的點,畫出該函數(shù)的圖象;
(3)根據(jù)函數(shù)圖象可得函數(shù)的性質(zhì):
①該函數(shù)的最小值為______;
②再寫出該函數(shù)一條性質(zhì)____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉(zhuǎn)可以得到△A2B2C2;請在圖中標明旋轉(zhuǎn)中心P的位置并寫出其坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小易同學在數(shù)學學習時,遇到這樣一個問題:如圖,已知點在直線外,請用一把刻度尺(僅用于測量長度和畫直線),畫出過點且平行于的直線,并簡要說明你的畫圖依據(jù).
小易想到一種作法:
①在直線上任取兩點、(兩點不重合);
②利用刻度尺連接并延長到,使;
③連接并量出中點;
④作直線.
∴直線即為直線的平行線.
(1)請依據(jù)小易同學的作法,補全圖形.
(2)證明:∵,
∴為的中點,
又∵為中點,
∴( )
(3)你還有其他畫法嗎?請畫出圖形,并簡述作法.
作法:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com