分析 (1)先證明△CDF≌△ABE,再證明AF=CE,AF∥CE即可.
(2)在AB上取一點(diǎn)M使得AM=EM,先證明△EMB是等腰直角三角形,求出AB,根據(jù)S平行四邊形AECF=CE•AB計(jì)算即可.
解答 (1)證明:∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠D=∠B=∠DAB=∠DCB=90°,∠DCA=∠BAC=45°,AD∥BC,
∵CF平分∠DCA,EA平分∠CAB,
∴∠DCF=∠EAB=22.5°,
在△DCF和△BAE中,
$\left\{\begin{array}{l}{∠D=∠B}\\{∠DCF=∠EAB}\\{CD=AB}\end{array}\right.$,
∴△CDF≌△ABE,
∴DF=BE,
∴AF=EC.∵AF∥CE,
∴四邊形AECF是平行四邊形.
(2)解:在AB上取一點(diǎn)M使得AM=EM,則∠MAE=∠MEA=22.5°,∴∠EMB=∠MAE+∠MEA=45°,
∴∠BME=∠BEM=45°,
∴BE=MB=1,EM=AM=$\sqrt{2}$,
∴AB=1+$\sqrt{2}$,CE=BC-BE=$\sqrt{2}$
∴S平行四邊形AECF=CE•AB=$\sqrt{2}$•(1+$\sqrt{2}$)=$\sqrt{2}$+2.
點(diǎn)評(píng) 本題考查正方形的性質(zhì)、平行四邊形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)、平行四邊形的面積公式等知識(shí),解題的關(guān)鍵是添加輔助線構(gòu)造等腰直角三角形,學(xué)會(huì)添加輔助線的方法,屬于中考?碱}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3x2-2x2=x2 | B. | x+x=2x | C. | 4x8÷2x2=2x4 | D. | x•x=x2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | -$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com