如圖,若正方形ABCD的邊長(zhǎng)為12cm,BP=5cm,EF⊥AP,且與AB、CD分別交于E、F,則EF的長(zhǎng)為________cm.

13
分析:由勾股定理求AP的長(zhǎng),過E點(diǎn)作EG⊥CD,垂足為G,利用互余關(guān)系證明∠BAP=∠GEF,可證△BAP≌△GEF,從而有EF=AP.
解答:解:在Rt△ABP中,AP===13,
過E點(diǎn)作EG⊥CD,垂足為G,
∵∠BAP+∠AEF=90°,∠GEF+∠AEF=90°,
∴∠BAP=∠GEF,
又∵AB=BC=EG,∠B=∠EGF=90°,
∴△BAP≌△GEF,
∴EF=AP=13cm.
故答案為:13.
點(diǎn)評(píng):本題考查了全等三角形的判斷與性質(zhì),正方形的性質(zhì)及勾股定理的運(yùn)用.關(guān)鍵是作輔助線,構(gòu)造全等三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,已知△ABC中,AB=AC,點(diǎn)P是BC上的一點(diǎn),PN⊥AC于點(diǎn)N,PM⊥AB于點(diǎn)M,CG⊥AB于點(diǎn)G點(diǎn).
(1)則CG、PM、PN三者之間的數(shù)量關(guān)系是
 
;
(2)如圖②,若點(diǎn)P在BC的延長(zhǎng)線上,則PM、PN、CG三者是否還有上述關(guān)系,若有,請(qǐng)說明理由,若沒有,猜想三者之間又有怎樣的關(guān)系,并證明你的猜想;
(3)如圖③,AC是正方形ABCD的對(duì)角線,AE=AB,點(diǎn)P是BE上任一點(diǎn),PN⊥AB于點(diǎn)N,PM⊥AC于點(diǎn)M,猜想PM、PN、AC有什么關(guān)系;(直接寫出結(jié)論)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角△ABC內(nèi),以A為一個(gè)頂點(diǎn)作正方形ADEF,使得點(diǎn)E落在BC邊上.
(1)用尺規(guī)作圖,作出點(diǎn)E在BC上的位置(保留作圖痕跡,不寫作法和證明);
(2)若AB=6,AC=2,求正方形ADEF的邊長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)如圖,若在△ABC中有三個(gè)內(nèi)接正方形,其邊長(zhǎng)分別為a=7,b=5,c=2.試證明∠ACB為直角.
(2)如圖,若在Rt△ABC中,∠ACB=90°,在其中內(nèi)接有三個(gè)邊長(zhǎng)分別為a,b,c的小正方形,若b=7,c=3,試求出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

猜想歸納:為了建設(shè)經(jīng)濟(jì)型節(jié)約型社會(huì),“先鋒”材料廠把一批三角形廢料重新利用,因此工人師傅需要把它們截成不同大小的正方形鐵片.
(1)如圖①,若截取△ABC的內(nèi)接正方形DEFG,請(qǐng)你求出此正方形的邊長(zhǎng);
(2)如圖②,若在△ABC內(nèi)并排截取兩個(gè)相同的正方形(它們組成的矩形內(nèi)接于△ABC),請(qǐng)你求此正方形的邊長(zhǎng);
(3)如圖③,若在△ABC內(nèi)并排截取三個(gè)相同的正方形(它們組成的矩形內(nèi)接于△ABC),請(qǐng)你求此正方形的邊長(zhǎng);

(4)猜想:如圖④,假設(shè)在△ABC內(nèi)并排截取n個(gè)相同的正方形,使它們組成的矩形內(nèi)接于△ABC,則此正方形的邊長(zhǎng)是多少?
(已知:AC=40,BC=30,∠C=90°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇期中題 題型:解答題

(1)如圖,若在△ABC中有三個(gè)內(nèi)接正方形,其邊長(zhǎng)分別為a=7,b=5,c=2。試證明∠ACB為直角;
(2)如圖,若在Rt△ABC中,∠ACB=90°,在其中內(nèi)接有三個(gè)邊長(zhǎng)分別為a,b,c的小正方形,若b=7,c=3,試求出a的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案