【題目】如圖1,A(﹣2,0),B(0,4),以B點為直角頂點在第二象限作等腰直角△ABC.
(1)求C點的坐標(biāo);
(2)在坐標(biāo)平面內(nèi)是否存在一點P,使△PAB與△ABC全等?若存在,求出P點坐標(biāo),若不存在,請說明理由;
(3)如圖2,點E為y軸正半軸上一動點,以E為直角頂點作等腰直角△AEM,過M作MN⊥x軸于N,求OE﹣MN的值.
【答案】(1)C(-4,6);(2)存在,(-6,2)或(2,-2)或(4,2)或(-4,6);(3)2.
【解析】
試題(1)作CE⊥y軸于E,證明△CBE≌△BAO即可得出結(jié)論;(2)分為四種情況討論:①當(dāng)P和C重合時,△PAB和△ABC全等,即此時P的坐標(biāo)是(-4,6);②點P在第二象限,過P作PE⊥x軸于E,滿足∠PAB=∠AOB=∠PEA=90°,PA=AB,則此時△PAB和△ABC全等,證明△PEA≌△AOB即可得出P點坐標(biāo);③點P在第一象限,作∠CAP=90°,交CB的延長線于P,此時△PAB和△ABC全等,過P作PE⊥x軸于E,證明△CMA≌△AEP即可求得P點坐標(biāo);④P點在第四象限,作∠BAP=90度,AP=AB,此時△PAB和△ABC全等,證明△AOB≌△PEA即可求出P點坐標(biāo);(3)作MF⊥y軸于F,把OE-MN轉(zhuǎn)化成OE-OF,于是OE-MN就等于EF的值,然后證明△AEO≌△EMF,把EF值轉(zhuǎn)化成AO的長度,就求出了OE-MN的結(jié)果.
試題解析:(1)作CE⊥y軸于E,如圖1,
∵A(-2,0),B(0,4),∴OA=2,OB=4,∵∠CBA=90°,∴∠CEB=∠AOB=∠CBA=90°,∴∠ECB+∠EBC=90°∠CBE+∠ABO=90°,∴∠ECB=∠ABO,在△CBE和△BAO中,∠ECB=∠ABO,∠CEB=∠AOB,BC=AB,∴△CBE≌△BAO(AAS),∴CE=BO=4,BE=AO=2,即OE=2+4=6,因為C點在第二象限,∴C(-4,6).
(2)分四種情況討論:①如圖2,當(dāng)P和C重合時,△PAB和△ABC全等,即此時P的坐標(biāo)是(-4,6);
②如圖3,點P在第二象限,過P作PE⊥x軸于E,滿足∠PAB=∠AOB=∠PEA=90°,PA=AB,則此時△PAB和△ABC全等,∵∠EPA+∠PAE=90°,∠PAE+∠BAO=90°,∴∠EPA=∠BAO(同角的余角相等),在△PEA和△AOB中,∠EPA=∠BAO,∠PEA=∠AOB,PA=AB,∴△PEA≌△AOB,∴PE=AO=2,EA=BO=4,∴OE=2+4=6,即P的坐標(biāo)是(-6,2);
③如圖4,點P在第一象限,作∠CAP=90°,交CB的延長線于P,此時△PAB和△ABC全等,過P作PE⊥x軸于E,過C作CM⊥x軸于M,
則∠CMA=∠PEA=90°,∵△CBA≌△PBA,∴∠PAB=∠CAB=45°,AC=AP,∴∠CAP=90°,∴∠MCA+∠CAM=90°,∠CAM+∠PAE=90°,∴∠MCA=∠PAE,在△CMA和△AEP中,∠MCA=∠PAE,∠CMA=∠PEA,AC=AP,∴△CMA≌△AEP,∴PE=AM,CM=AE,∵C(-4,6),A(-2,0),
∴PE=AM=4-2=2,OE=AE-A0=6-2=4,即P的坐標(biāo)是(4,2);
④如圖5,P點在第四象限,作∠BAP=90度,AP=AB,此時△PAB和△ABC全等,過P作PE⊥x軸于E,
∵△CBA≌△PAB,∴AB=AP,∠CBA=∠BAP=90°,則∠AEP=∠AOB=90°,∴∠BAO+∠PAE=90°,∠PAE+∠APE=90°,∴∠BAO=∠APE,在△AOB和△PEA中,∠BAO=∠APE,∠AOB=∠PEA,AB=AP,∴△AOB≌△PEA,∴PE=AO=2,AE=OB=4,∴0E=AE-AO=4-2=2,即P的坐標(biāo)是(2,-2).綜上所述:坐標(biāo)平面內(nèi)存在一點P,使△PAB與△ABC全等,符合條件的P的坐標(biāo)是(-6,2)或(2,-2)或(4,2)或(-4,6).(3)如圖6,作MF⊥y軸于F,
則∠AEM=∠EFM=∠AOE=90°,∵∠AEO+∠MEF=90°,∠MEF+∠EMF=90°,∴∠AEO=∠EMF,在△AOE和△EMF中,∠AOE=∠EFM,∠AEO=∠EMF,AE=EM,∴△AEO≌△EMF,∴EF=AO=2,MF=OE,∵M(jìn)N⊥x軸,MF⊥y軸,∴∠MFO=∠FON=∠MNO=90°,∴四邊形FONM是矩形,∴MN=OF,∴OE-MN=OE-OF=EF=OA=2.即OE-MN的值是2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC在直角坐標(biāo)系內(nèi),三個頂點的坐標(biāo)分別為A(0,3),B(3,4),C(2,2)(正方形網(wǎng)格中每個小正方形的邊長均為一個單位長度).
①畫出△ABC向下平移4個單位長度得到的△A1B1C1 , 點C1的坐標(biāo)是________;
②以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2 , 使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標(biāo)是________;
③若M(a,b)為線段AC上任一點,寫出點M的對應(yīng)點M2的坐標(biāo)________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:圖象①②③均是以P0為圓心,1個單位長度為半徑的扇形,將圖形①②③分別沿東北,正南,西北方向同時平移,每次移動一個單位長度,第一次移動后圖形①②③的圓心依次為P1P2P3,第二次移動后圖形①②③的圓心依次為P4P5P6…,依此規(guī)律,P0P2018=_____個單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,FC⊥CD,∠1=∠2,∠B=60°.
(1)求∠BCF的度數(shù);(2)如果DE是∠ADC的平分線,那么DE與AB平行嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知FG⊥AB,CD⊥AB,垂足分別為G,D,∠1=∠2,
求證:∠CED+∠ACB=180°,
請你將小明的證明過程補充完整.
證明:∵FG⊥AB,CD⊥AB,垂足分別為G,D(已知)
∴∠FGB=∠CDB=90°( ).
∴GF∥CD( )
∵GF∥CD(已證)
∴∠2=∠BCD( )
又∵∠1=∠2(已知)
∴∠1=∠BCD( )
∴ ( )
∴∠CED+∠ACB=180°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:p為實數(shù).
p | k | q |
… | … | … |
3 | 16×3+26 | 2×2×6 |
4 | 16×4+26 | 2×3×7 |
5 | 16×5+26 | 2×4×8 |
6 | 16×6+26 | 2×5×9 |
7 | 16×7+26 | 2×6×10 |
… | … | … |
根據(jù)上表中的規(guī)律,回答下列問題:
(1)當(dāng)p為何值時,k=38?
(2)當(dāng)p為何值時,k與q的值相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】生活與數(shù)學(xué)
(1)瑩瑩在日歷上圈出三個數(shù),呈大寫的“一”字,這三個數(shù)的和是中間數(shù)的 倍,瑩瑩又在日歷上圈出5個數(shù),呈“十”字框形,它們的和是50,則中間的數(shù)是 :
(2)小麗同學(xué)也在某月的日歷上圈出如圖所示“七”字形,發(fā)現(xiàn)這八個數(shù)的和是125,那么這八個數(shù)中最大數(shù)為 :
(3)在第(2)題中這八個數(shù)之和 為101(填“能”或“不能”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論:①HE=HF;②EC平分∠DCH;③線段BF的取值范圍為3≤BF≤4;④當(dāng)點H與點A重合時,EF=2.以上結(jié)論中,你認(rèn)為正確的有( )個.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com