【題目】如圖,AD∥BC,FC⊥CD,∠1=∠2,∠B=60°.
(1)求∠BCF的度數(shù);(2)如果DE是∠ADC的平分線,那么DE與AB平行嗎?請(qǐng)說明理由.
【答案】(1)∠BCF=30°;(2)DE∥AB,見解析.
【解析】
(1)根據(jù)平行線的性質(zhì)和已知求出∠2=∠1=∠B,即可得出答案;
(2)求出∠1=∠B=60°,根據(jù)平行線的性質(zhì)求出∠ADC,求出∠ADE,即可得出∠1=∠ADE,根據(jù)平行線的判定得出即可.
(1)∵AD∥BC,
∴∠1=∠B=60°,
又∵∠1=∠2,
∴∠2=60°,
又∵FC⊥CD,
∴∠BCF=90°﹣60°=30°;
(2)DE∥AB.
證明:∵AD∥BC,∠2=60°,
∴∠ADC=120°,
又∵DE是∠ADC的平分線,
∴∠ADE=60°,
又∵∠1=60°,
∴∠1=∠ADE,
∴DE∥AB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在和中, ,, .
(1)若三點(diǎn)在同一直線上,連接交于點(diǎn),求證: .
(2)在第(1)問的條件下,求證: ;
(3)將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到圖2,那么第(2)問中的結(jié)論是否依然成立?若成立,請(qǐng)證明你的結(jié)論:若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一圓錐形糧堆,其側(cè)面展開圖是半徑為6m的半圓,糧堆母線AC的中點(diǎn)P處有一老鼠正在偷吃糧食,此時(shí),小貓正在B處,它要沿圓錐側(cè)面到達(dá)P處捕捉老鼠,則小貓所經(jīng)過的最短路程長為( )
A.3m
B. m
C. m
D.4m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù) 的圖象與一次函數(shù) 的圖象交于點(diǎn)A(1,4)、點(diǎn)B(-4,n).
(1)求 和 的值;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點(diǎn)C恰好落在AB邊上的點(diǎn)D處,已知MN∥AB,MC=6,NC= ,則四邊形MABN的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù) 的圖象與一次函數(shù)y=x+b的圖象交于點(diǎn)A(1,4)、點(diǎn)B(-4,n).
(1)求△OAB的面積;
(2)根據(jù)圖象,直接寫出不等式 的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OB=1,以O(shè)B為直角邊作等腰直角三角形A1BO,再以O(shè)A1為直角邊作等腰直角三角形A2A1O,如此下去,則線段OAn的長度為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com