【題目】如圖,已知△ABC,請用直尺(不帶刻度),和圓規(guī),按下列要求作圖(不要求寫作法,但要保留作圖痕跡).

1)作菱形AMNP,使點M,NP在邊AB、BC、CA上;

2)當(dāng)∠A=60°,AB=8,AC=6時,求菱形AMNP的面積.

【答案】1)詳見解析;(2

【解析】

1)作∠BAC的角平分線交BCN,作線段AN的垂直平分線交AC于點P,交AB于點M,連接MN,PN,四邊形AMNP是菱形.

2)如圖,作CFANF,BEANE.想辦法求出ANPM即可.

解:(1)菱形AMNP如圖所示.

2)如圖,作CFANF,BEANE

RtACF中, 菱形,

CAF=30°,

∵∠AFC=90°,AC=6

CF=3,

同法可得:BE=4,

EF=AE-AF=

CFBE,

EN=EF=

AN=AE-EN=

菱形,

互相平分,

S菱形AMNP=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD中,點EBC的中點,過點BBGAE于點G,過點CCF垂直BG的延長線于點H,交AD于點F

(1)求證:△ABG≌△BCH;

(2)如圖2,連接AH,連接EH并延長交CD于點I

求證:① AB2=AE·BH;② 的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知以RtABC的邊AB為直徑作ABC的外接圓⊙O,B的平分線BEACD,交⊙OE,過EEFACBA的延長線于F.

(1)求證:EF是⊙O切線;

(2)若AB=15,EF=10,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級某班組織班級聯(lián)歡會,最后進(jìn)入抽獎環(huán)節(jié),每名同學(xué)都有一次抽獎機(jī)會.抽獎方案如下:將一副撲克牌中點數(shù)為“2”、“3”、“3”、“5”、“6”的五張牌背面朝上洗勻,先從中抽出1張牌,再從余下的4張牌中抽出1張牌,記錄兩張牌點數(shù)后放回,完成一次抽獎.記每次抽出兩張牌點數(shù)之差為,按下表要求確定獎項.

獎項

一等獎

二等獎

三等獎

1)用列表法或畫樹狀圖的方法求出甲同學(xué)獲二等獎的概率;

2)判斷是否每次抽獎都會獲獎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:在平面直角坐標(biāo)系中,已知拋物線軸交于,兩點(在點的右側(cè)),與軸交于點,它的對稱軸與軸交于點,直線經(jīng)過兩點,連接

1)求兩點的坐標(biāo)及直線的函數(shù)表達(dá)式;

2)探索直線上是否存在點,使為直角三角形,若存在,求出點的坐標(biāo);若不存在,說明理由;

3)若點是直線上的一個動點,試探究在拋物線上是否存在點

①使以點,,為頂點的四邊形為菱形,若存在,請直接寫出點的坐標(biāo);若不存在,說明理由;

②使以點,,,為頂點的四邊形為矩形,若存在,請直接寫出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南洞庭大橋是南益高速公路上的重要橋梁,小芳同學(xué)在校外實踐活動中對此開展測量活動.如圖,在橋外一點A測得大橋主架與水面的交匯點C的俯角為α,大橋主架的頂端D的仰角為β,已知測量點與大橋主架的水平距離ABa,則此時大橋主架頂端離水面的高CD( )

A.asinα+asinβB.acosα+acosβC.atanα+atanβD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解八年級學(xué)生課堂發(fā)言情況,隨機(jī)抽取該年級部分學(xué)生,對他們某天在課堂上發(fā)言的次數(shù)進(jìn)行了統(tǒng)計,其結(jié)果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知兩組發(fā)言人數(shù)的比為,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:

發(fā)言次數(shù)

1)求出樣本容量,并補(bǔ)全直方圖;

2)該年級共有學(xué)生1500人,請估計全年級在這天里發(fā)言次數(shù)不少于12次的人數(shù);

3)已知組發(fā)言的學(xué)生中恰有1位男生,組發(fā)言的學(xué)生中有2位女生.現(xiàn)從組與組中分別抽一位學(xué)生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學(xué)生恰好是一男一女的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在RtABC中,∠C=90°,點O在邊BC上,以點O為圓心,OB為半徑的圓經(jīng)過點A,過點A作直線AD,使∠CAD=2B

1)判斷直線AD與⊙O的位置關(guān)系,并說明理由;

2)若OB=4,∠CAD=60°,請直接寫出圖中弦AB圍成的陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科技公司研發(fā)出一款多型號的智能手表,一家代理商出售該公司的型智能手表,去年銷售總額為80000元,今年型智能手表的售價每只比去年降了600元,若今年售出的數(shù)量與去年相同的情況下,今年的銷售總額將比去年減少.

1)求今年型智能手表每只售價多少元?

2)今年這家代理商準(zhǔn)備新進(jìn)一批型智能手表和型智能手表共100只,它們的進(jìn)貨價與銷售價格如下表所示,若型智能手表進(jìn)貨量不超過型智能手表進(jìn)貨量的3倍,所進(jìn)智能手表可全部售完,請你設(shè)計出進(jìn)貨方案,使這批智能手表獲利最多,并求出最大利潤是多少元?

型智能手表

型智能手表

進(jìn)價

1300元/只

1500元/只

售價

今年的售價

2300元/只

查看答案和解析>>

同步練習(xí)冊答案