【題目】南洞庭大橋是南益高速公路上的重要橋梁,小芳同學在校外實踐活動中對此開展測量活動.如圖,在橋外一點A測得大橋主架與水面的交匯點C的俯角為α,大橋主架的頂端D的仰角為β,已知測量點與大橋主架的水平距離ABa,則此時大橋主架頂端離水面的高CD( )

A.asinα+asinβB.acosα+acosβC.atanα+atanβD.

【答案】C

【解析】

RtABDRtABC中,由三角函數(shù)得出BCatanα,BDatanβ,得出CDBC+BDatanα+atanβ即可.

RtABDRtABC中,ABatanα,tanβ

BCatanα,BDatanβ,

CDBC+BDatanα+atanβ,

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形都是由面積為1的正方形按一定的規(guī)律組成的,其中,第1個圖形中面積為1的正方形有9個,第2個圖形中面積為1的正方形有14個,……,按此規(guī)律,則第幾個圖形中面積為1的正方形的個數(shù)為2019個(

A.400B.401C.402D.403

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C⊙O的直徑AB延長線上的一點,且有BO=BD=BC

1)求證:CD⊙O的切線;

2)若半徑OB=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】十三五以來,山西省共解決372個村、35.8萬農(nóng)村人口的飲水型氟超標問題,讓農(nóng)村群眾真正喝上干凈水、放心水、安全水.某公司抓住商機,根據(jù)市場需求代理,兩種型號的凈水器,已知每臺型凈水器比每臺型凈水器進價多200元,用5萬元購進型凈水器與用4.5萬元購進型凈水器的數(shù)量相等.

1)求每臺型,型凈水器的進價各是多少元?

2)該公司計劃購進,兩種型號的凈水器共55臺進行試銷,其中型凈水器為臺,購買兩種凈水器的總資金不超過10.8萬元.則最多可購進型號凈水器多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC,請用直尺(不帶刻度),和圓規(guī),按下列要求作圖(不要求寫作法,但要保留作圖痕跡).

1)作菱形AMNP,使點MN、P在邊AB、BC、CA上;

2)當∠A=60°,AB=8AC=6時,求菱形AMNP的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線,垂足為點是直線上的兩點,且.直線繞點按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為

1)當時,在直線上找點,使得是以為頂角的等腰三角形,此時_____

2)當在什么范圍內(nèi)變化時,直線上存在點,使得是以為頂角的等腰三角形,請用不等式表示的取值范圍:_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,按以下步驟作圖:①分別以點C和點D為圓心,大于為半徑作弧,兩弧交于點M,N;②作直線MN,且恰好經(jīng)過點A,與CD交于點E,連接BE,則下列說法錯誤的是( )

A.B.C.AB=4,則D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本題滿分6分一只不透明的袋子中裝有1個白球、1個藍球和2個紅球,這些球除顏色外都相同

(1)從袋中隨機摸出1個球,摸出紅球的概率為 ;

(2)從袋中隨機摸出1個球不放回后,再從袋中余下的3個球中隨機摸出1個球,球兩次摸到的球顏色不相同的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙OAB于點D,過點DDE⊥AC于點E,交BC的延長線于點F

求證:

1AD=BD;

2DF⊙O的切線.

查看答案和解析>>

同步練習冊答案