已知a,b,c為三個(gè)連續(xù)奇數(shù)(a<b<c),且它們均為質(zhì)數(shù),那么符合條件的三數(shù)組(a,b,c)有( 。
分析:先找出符合條件的最小的一組數(shù),再a>3且a為質(zhì)數(shù),則a可分為被3除余1或2的兩類,分別求出b的值,再根據(jù)質(zhì)數(shù)與合數(shù)的定義進(jìn)行判斷即可.
解答:解:∵3,5,7是三個(gè)連續(xù)奇數(shù),且均為質(zhì)數(shù),
∴3,5,7為符合條件的三數(shù)組,若a>3且a為質(zhì)數(shù),則a可分為被3除余1或2的兩類.
若a=3m+1,m為自然數(shù),則b=a+2=3m+3為合數(shù).
若a=3m+2,m為自然數(shù),則c=a+4=3m+6也是合數(shù),故當(dāng)a>3時(shí),沒(méi)有符合條件的三數(shù)組.
故選B.
點(diǎn)評(píng):本題考查的是質(zhì)數(shù)與合數(shù)的定義,熟練掌握其定義是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、已知a、b、c為三個(gè)正整數(shù),如果a+b+c=12,那么以a、b、c為邊能組成的三角形是:①等腰三角形;②等邊三角形;③直角三角形;④鈍角三角形.以上符合條件的正確結(jié)論是
①②③
.(只填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知a、b、c為三個(gè)正整數(shù),如果a+b+c=12,那么以a、b、c為邊能組成的三角形是:①等腰三角形;②等邊三角形;③直角三角形;④鈍角三角形.以上符合條件的正確結(jié)論個(gè)數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c為三個(gè)非負(fù)數(shù),且滿足3a+2b+c=5,2a+b-3c=1.
(1)求c的取值范圍;
(2)設(shè)S=3a+b-7c,求S的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x,y,z為三個(gè)非負(fù)實(shí)數(shù),滿足
x+y+z=30
2x+3y+4z=100

(1)用含z的代數(shù)式分別表示x,y得x=
z-10
z-10
,y=
-2z+40
-2z+40

(2)s=3x+2y+5z的最小值為
90
90

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知a1,a2,a3為三個(gè)整數(shù),且a1≤a2≤a3,三個(gè)數(shù)中的每一數(shù)均為其它兩數(shù)的乘積,求所有滿足條件的三數(shù)組(a1,a2,a3).
(2)如果a1,a2,a3,a4,a5,a6為6個(gè)整數(shù),且a1≤a2≤a3≤a4≤a5≤a6,六個(gè)數(shù)中任一個(gè)數(shù)均為其它五個(gè)數(shù)中某四個(gè)數(shù)的乘積,那么滿足上述條件的數(shù)組(a1,a2,a3,a4,a5,a6)共有多少組?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案