【題目】平行四邊形ABCD的對(duì)角線AC和BD交于O點(diǎn),分別過頂點(diǎn)B,C作兩對(duì)角線的平行線交于點(diǎn)E,得平行四邊形OBEC.
(1)如果四邊形ABCD為矩形(如圖),四邊形OBEC為何種四邊形?請(qǐng)證明你的結(jié)論;
(2)當(dāng)四邊形ABCD是 形時(shí),四邊形OBEC是正方形.
【答案】(1)證明見解析;(2)正方
【解析】(1)根據(jù)矩形的性質(zhì):兩條對(duì)角線相等且互相平分,即可得到結(jié)論;(2)根據(jù)正方形的性質(zhì):對(duì)角線相等且互相垂直平分,即可得到結(jié)論.
解:(1)四邊形OBEC是菱形.理由如下:
∵BE∥OC,CE∥OB,
∴四邊形OBEC為平行四邊形.
又∵四邊形ABCD是矩形,
∴OC=AC; OB=BD;AC=BD
∴OC=OB,
∴平行四邊形OBEC為菱形;
(2) 四邊形ABCD是正方形時(shí),四邊形OBEC是正方形. 理由如下:
四邊形OBEC是菱形.
∵BE∥OC,CE∥OB,
∴四邊形OBEC為平行四邊形.
又∵四邊形ABCD是正方形,
∴OC=AC; OB=BD;AC=BD且AC⊥BD
∴OC=OB,∠BOC=90,
∴平行四邊形OBEC為正方形;
即:當(dāng)四邊形ABCD是正方形時(shí),四邊形OBEC是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小麗想知道自家門前小河的寬度,于是她按以下辦法測(cè)出了如下數(shù)據(jù):小麗在河岸邊選取點(diǎn)A,在點(diǎn)A的對(duì)岸選取一個(gè)參照點(diǎn)C,測(cè)得∠CAD=30°;小麗沿岸向前走30m選取點(diǎn)B,并測(cè)得∠CBD=60°.請(qǐng)根據(jù)以上數(shù)據(jù),用你所學(xué)的數(shù)學(xué)知識(shí),幫小麗計(jì)算小河的寬度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(﹣2,0),點(diǎn)B(0,2),點(diǎn)E,點(diǎn)F分別為OA,OB的中點(diǎn).若正方形OEDF繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得正方形OE′D′F′,記旋轉(zhuǎn)角為α.
(1)如圖①,當(dāng)α=90°時(shí),求AE′,BF′的長;
(2)如圖②,當(dāng)α=135°時(shí),求證AE′=BF′,且AE′⊥BF′;
(3)若直線AE′與直線BF′相交于點(diǎn)P,求點(diǎn)P的縱坐標(biāo)的最大值(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線EF分別平行四邊形ABCD邊AB、 CD于點(diǎn)E、F,將圖形沿直線EF對(duì)折,點(diǎn)A、D分別落在點(diǎn)、A',D'處,
(1) 如圖1,當(dāng)點(diǎn)A’與點(diǎn)C重合時(shí),連接AF,求證:四邊形AECF是菱形:
(2)若∠A=60°,AD=4, AB=8,
①如圖2.當(dāng)點(diǎn)A’與BC邊的中點(diǎn)G重合時(shí),求AE的長;
②如圖3.當(dāng)點(diǎn)A’落在BC邊上任意點(diǎn)時(shí),設(shè)點(diǎn)P為直線EF上的動(dòng)點(diǎn),請(qǐng)直接寫出PC+PA’的最小值 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線y=﹣2x+3與x軸交于點(diǎn)A,與直線y=x交于點(diǎn)B.
(1)點(diǎn)A坐標(biāo)為 ,∠AOB= ;
(2)求S△OAB的值;
(3)動(dòng)點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度沿著O→A的路線向終點(diǎn)A勻速運(yùn)動(dòng),過點(diǎn)E作EF⊥x軸交直線y=x于點(diǎn)F,再以EF為邊向右作正方形EFGH.設(shè)運(yùn)動(dòng)t秒時(shí),正方形EFGH與△OAB重疊部分的面積為S.求:S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=60°.在△ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)為D,連接AD,BD.
(1)依據(jù)題意補(bǔ)全圖形;
(2)當(dāng)∠PAC等于多少度時(shí),AD∥BC?請(qǐng)說明理由;
(3)若BD交直線AP于點(diǎn)E,連接CE,求∠CED的度數(shù);
(4)探索:線段CE,AE和BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成推理填空:如圖在△ABC中,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠C.
解:∵∠1+∠EFD=180°(鄰補(bǔ)角定義),∠1+∠2=180°(已知 )
∴ (同角的補(bǔ)角相等)①
∴ (內(nèi)錯(cuò)角相等,兩直線平行)②
∴∠ADE=∠3( )③
∵∠3=∠B( )④
∴ (等量代換)⑤
∴DE∥BC( )⑥
∴∠AED=∠C( )⑦
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,2)請(qǐng)解答下列問題:
(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫出A1的坐標(biāo).
(2)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2,并寫出A2的坐標(biāo).
(3)畫出△A2B2C2關(guān)于原點(diǎn)O成中心對(duì)稱的△A3B3C3,并寫出A3的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,以為圓心,任意長為半徑畫弧分別交、于點(diǎn)和,再分別以、為圓心,大于的長為半徑畫弧,兩弧交于點(diǎn),連結(jié)并延長交于點(diǎn),則下列說法中正確的個(gè)數(shù)是( )
①是的平分線;②;③;④
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com