【題目】如圖,在邊長為12的正方形ABCD中,E是邊CD的中點,將ADE沿AE對折至AFE,延長EFBC于點G.BG的長為( 。

A. 5 B. 4 C. 3 D. 2

【答案】B

【解析】利用翻折變換對應(yīng)邊關(guān)系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;利用勾股定理得出GE2=CG2+CE2,進(jìn)而求出BG即可;

在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,

∵將△ADE沿AE對折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,

∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,

Rt△ABGRt△AFG中,AG=AG,AB=AF, ∴Rt△ABG≌Rt△AFG(HL),

∴BG=GF,∵E是邊CD的中點,∴DE=CE=6,

設(shè)BG=x,則CG=12-x,GE=x+6,∵GE2=CG2+CE2, ∴(x+6)2=(12-x)2+62

解得:x=4, ∴BG=4. 故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 ﹣(π﹣3)0﹣(﹣1)2017+(﹣ 2+tan60°+| ﹣2|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一次函數(shù)ykxb的圖象,以下說法中正確的是(  )

A. 直線與y軸的交點為(3,0) B. yx的增大而增大

C. 直線與兩坐標(biāo)軸圍成的三角形面積是6 D. 一元一次方程kxb=0的解為x=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,有一個菱形BFDE(點E,F(xiàn)分別在線段AB,CD上),記它們的面積分別為SABCD和SBFDE , 現(xiàn)給出下列命題:①若 = ,則tan∠EDF= ;②若DE2=BDEF,則DF=2AD,則(
A.①是假命題,②是假命題
B.①是真命題,②是假命題
C.①是假命題,②是真命題
D.①是真命題,②是真命題

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為5的正方形OABC的頂點O在坐標(biāo)原點處,A,C分別在x軸、y軸的正半軸上,EOA邊上的點(不與點A重合),EFCE,且與正方形外角平分線AG交于點P.

(1)求證:CE=EP.

(2)若點E的坐標(biāo)為(3,0),y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將ADE沿AE對折至AFE,延長EF交邊BC于點G,連接AGCF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AGCF;④SEGC=SAFE;⑤∠AGB+∠AED=145°.其中正確的個數(shù)是( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將二次函數(shù)y=x2﹣m(其中m>0)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,形成新的圖象記為y1 , 另有一次函數(shù)y=x+b的圖象記為y2 , 則以下說法: ①當(dāng)m=1,且y1與y2恰好有三個交點時b有唯一值為1;
②當(dāng)b=2,且y1與y2恰有兩個交點時,m>4或0<m< ;
③當(dāng)m=﹣b時,y1與y2一定有交點;
④當(dāng)m=b時,y1與y2至少有2個交點,且其中一個為(0,m).
其中正確說法的序號為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程(組)解應(yīng)用題

(1)某中學(xué)組織初一學(xué)生春游,原計劃租用45座汽車若干輛,但有15人沒有座位;若租用同樣數(shù)量的60座汽車,則比45座汽車多出一輛無人乘坐,但其余客車恰好坐滿.問初一年級人數(shù)是多少?原計劃租用45座汽車多少輛?

(2)《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,記有許多有趣而又不乏技巧的算術(shù)程式,其中記載:今有甲、乙二人,持錢各不知數(shù).甲得乙中半,可滿四十八.乙得甲太半,亦滿四十八,問甲、乙二人原持錢各幾何?譯文:甲,乙兩人各有若干錢.如果甲得到乙所有錢的一半,那么甲共有錢48文,如果乙得到甲所有錢的,那么乙也共有錢48文,問甲,乙二人原來各有多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+b經(jīng)過點A(2,0),B(0,1),動點P是x軸正半軸上的動點,過點P作PC⊥x軸,交直線AB于點C,以O(shè)A,AC為邊構(gòu)造OACD,設(shè)點P的橫坐標(biāo)為m.

(1)求直線AB的函數(shù)表達(dá)式;
(2)若四邊形OACD恰是菱形,請求出m的值;
(3)在(2)的條件下,y軸的正半軸上是否存在點Q,連結(jié)CQ,使得∠OQC+∠ODC=180°.若存在,直接寫出所有符合條件的點Q的坐標(biāo),若不存在,則說明理由.

查看答案和解析>>

同步練習(xí)冊答案