【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,請證明:BD=AB﹣AF;
(2)試探索:點D在AB的延長線或反向延長線上時,請在備用圖中畫出圖形,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論(不需要證明).
【答案】(1)證明見解析(2)結(jié)論不成立
【解析】
(1)易證∠FBA=∠FCE,結(jié)合條件容易證到△FAB≌△DAC,從而有FA=DA,就可得到AB=AD+BD=FA+BD.
(2)由于點D的位置在變化,因此線段AF、BD、AB之間的大小關(guān)系也會相應(yīng)地發(fā)生變化,只需畫出圖象并借鑒(1)中的證明思路就可解決問題.
(1)證明∵BE⊥CD即∠BEC=90°,∠BAC=90°,
∴∠F+∠FBA=90°,∠F+∠FCE=90°,
∴∠FBA=∠FCE,
∵∠FAB=180°-∠DAC=90°,
∴∠FAB=∠DAC,
在△FAB和△DAC中,,
∴△FAB≌△DAC(ASA),
∴FA=DA,
∴AB=AD+BD=FA+BD,
∴BD=AB-AF;
(2)解:(1)中的結(jié)論不成立.
點D在AB的延長線上時,AB=AF-BD;點D在AB的反向延長線上時,AB=BD-AF.
理由如下:
①當(dāng)點D在AB的延長線上時,如圖2.
同理可得:FA=DA.
則AB=AD-BD=AF-BD.
②點D在AB的反向延長線上時,如圖3.
同理可得:FA=DA.
則AB=BD-AD=BD-AF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩條直線都與第三條直線相交,∠1和∠2是內(nèi)錯角,∠3和∠2是鄰補角.
(1)根據(jù)上述條件,畫出符合題意的圖形;
(2)若∠1∶∠2∶∠3=1∶2∶3,求∠1,∠2,∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )
A. 如圖1,展開后測得∠1=∠2
B. 如圖2,展開后測得∠1=∠2且∠3=∠4
C. 如圖3,測得∠1=∠2
D. 如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OB,OC=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),B(4,0),與y軸交于點C(0,2),點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線l,交拋物線于點Q.
(1)求拋物線的解析式;
(2)求直線BD的解析式;
(3)當(dāng)點P在線段OB上運動時,直線l交BD于點M,是否存在點P,使得四邊形CQMD是平行四邊形?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用不等式表示下列關(guān)系:
(1)m與10的和不小于m的一半:________;
(2)3與x的5倍的差是非負(fù)數(shù):________;
(3)長為a,寬為a-1的長方形的面積小于邊長為a的正方形的面積:________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(0,4)是直角坐標(biāo)系 y 軸上一點,動點 P 從原點 O 出發(fā),沿 x 軸正半軸運動,速度為每秒 1 個單位長度,以P為直角頂點在第一象限內(nèi)作等腰Rt△APB.設(shè)P點的運動時間為 t 秒.
(1)若 AB∥x 軸,求 t 的值;
(2)若OP=OA,求B點的坐標(biāo).
(3)當(dāng) t=3 時,x 軸上是否存在有一點 M,使得以 M、P、A 為頂點的三角形是等腰三角形,請直接寫出點 M 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織七年級175名學(xué)生參加社會實踐活動,已知35座客車的租金為每輛320元,55座客車的租金為每輛400元.
(1)若學(xué)校單獨租用這兩種車,則各需多少元?
(2)若學(xué)校同時租用這兩種客車共4輛(可以坐不滿),而且比單獨租用一種車節(jié)省租金,請你幫助該學(xué)校選擇一種最節(jié)省租金的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是( )
A.當(dāng)m=﹣3時,函數(shù)圖象的頂點坐標(biāo)是( )
B.當(dāng)m>0時,函數(shù)圖象截x軸所得的線段長度大于
C.當(dāng)m≠0時,函數(shù)圖象經(jīng)過同一個點
D.當(dāng)m<0時,函數(shù)在x 時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在植樹節(jié)到來之際,某小區(qū)計劃購進A、B兩種樹苗共17棵,已知A種樹苗每棵80元,B種樹苗每棵60元.
(1)若購進A、B兩種樹苗剛好用去1220元,問購進A、B兩種樹苗各多少棵?
(2)若購買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,請你給出一種費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com