【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(4,0),與y軸交于點(diǎn)C(0,2),點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l,交拋物線于點(diǎn)Q.
(1)求拋物線的解析式;
(2)求直線BD的解析式;
(3)當(dāng)點(diǎn)P在線段OB上運(yùn)動時,直線l交BD于點(diǎn)M,是否存在點(diǎn)P,使得四邊形CQMD是平行四邊形?若存在,求出m的值;若不存在,請說明理由.
【答案】
(1)
解:由題意可得 ,解得 ,
∴拋物線解析式為y=﹣ x2+ x+2
(2)
解:∵點(diǎn)C與點(diǎn)D關(guān)于x軸對稱,
∴D(0,﹣2),
∴可設(shè)直線BD解析式為y=kx﹣2,
把B(4,0)代入可得4k﹣2=0,解得k= ,
∴直線BD的解析式為y= x﹣2
(3)
解:如圖所示,
設(shè)Q(m,﹣ m2+ m+2),則M(m, m﹣2),
∴QM=﹣ m2+ m+2﹣( m﹣2)=﹣ m2+m+4,
∵QM∥CD,
∴當(dāng)QM=CD時,四邊形CQMD是平行四邊形,
∴﹣ m2+m+4=4,解得m=0(不合題意,舍去)或m=2,
∴當(dāng)m=2時,四邊形CQMD是平行四邊形
【解析】(1)由A、B、C的坐標(biāo),利用待定系數(shù)法可求得拋物線的解析式;(2)由對稱性可求得D點(diǎn)坐標(biāo),利用待定系數(shù)法可求得直線BD的解析式;(3)用m可表示出M、Q的坐標(biāo),則可表示出QM的長,由平行四邊形的性質(zhì)可知QM∥CD且QM=CD,則可得到關(guān)于m的方程,可求得m的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校環(huán)保社成員想測量斜坡 旁一棵樹 的高度,他們先在點(diǎn) 處測得樹頂 的仰角為 ,然后在坡頂 測得樹頂 的仰角為 ,已知斜坡 的長度為 , 的長為 ,則樹 的高度是( )
A.
B.30
C.
D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P,Q分別是∠AOB的邊OA,OB上的點(diǎn).
(1)過點(diǎn)P畫OB的垂線,垂足為H;
(2)過點(diǎn)Q畫OA的垂線,交OA于點(diǎn)C,連接PQ;
(3)線段QC的長度是點(diǎn)Q到 的距離, 的長度是點(diǎn)P到直線OB的距離,因?yàn)橹本外一點(diǎn)和直線上各點(diǎn)連接的所有線段中,垂線段最短,所以線段PQ、PH的大小關(guān)系是 (用“<”號連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥CD,∠1=∠2,∠3=∠4.
(1)求證:AD∥BE;
(2)若∠B=∠3=2∠2,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“世界那么大,我想去看看”一句話紅遍網(wǎng)絡(luò),騎自行車旅行越來越受到人們的喜愛,各種品牌的山地自行車相繼投放市場.某車行經(jīng)營的A型車2016年4月份銷售總額為3.2萬元,今年經(jīng)過改造升級后A型車每輛銷售價比去年增加400元,若今年4月份與去年4月份賣出的A型車數(shù)量相同,則今年4月份A型車銷售總額將比去年4月份銷售總額增加25%.(A、B兩種型號車今年的進(jìn)貨和銷售價格如下表所示)
A型車 | B型車 | |
進(jìn)貨價格(元/輛) | 1100 | 1400 |
銷售價格(元/輛) | 今年的銷售價格 | 2400 |
(1)求今年4月份A型車每輛銷售價多少元(用列方程進(jìn)行解答);
(2)該車行計劃5月份新進(jìn)一批A型車和B型車共50輛,設(shè)購進(jìn)的A型車為x輛,獲得的總利潤為y元,請寫出y與x之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,若B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡單多面體中頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個有趣的關(guān)系式,被稱為歐拉公式.請你觀察下列幾種簡單的多面體模型,解答下列問題:
(1)根據(jù)上面的多面體模型,完成表格:
多面體 | 頂點(diǎn)數(shù)(V) | 面數(shù)(F) | 棱數(shù)(E) |
四面體 | 4 | 4 | |
正方體 | 8 | 12 | |
正八面體 | 6 | 8 | 12 |
正十二面體 | 20 | 12 | 30 |
可以發(fā)現(xiàn)頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是_______________;
(2)若一個多面體的面數(shù)比頂點(diǎn)數(shù)大8,且有30條棱,則這個多面體的面數(shù)是______;
(3)某個玻璃飾品的外形是簡單多面體,它的外表面是由三角形和八邊形兩種多邊形拼接而成,且有24個頂點(diǎn),每個頂點(diǎn)處有3條棱.設(shè)該多面體外表面三角形的個數(shù)為x,八邊形的個數(shù)為y,求x+y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是直線AB上的一動點(diǎn)(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點(diǎn)D在邊AB上時,請證明:BD=AB﹣AF;
(2)試探索:點(diǎn)D在AB的延長線或反向延長線上時,請在備用圖中畫出圖形,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論(不需要證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),A的坐標(biāo)為(1, ),則點(diǎn)B的坐標(biāo)為( )
A.(1﹣ , +1)
B.(﹣ , +1)??
C.(﹣1, +1)
D.(﹣1, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD是∠B的平分線,交AC于點(diǎn)D,E是AB中點(diǎn),ED交BC的延長線于點(diǎn)F.求證:AB=CF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com