A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①先判斷出四邊形CFHE是平行四邊形,再根據(jù)翻折的性質(zhì)可得CF=FH,然后根據(jù)鄰邊相等的平行四邊形是菱形證明,判斷出①正確;
②根據(jù)菱形的對角線平分一組對角線可得∠BCH=∠ECH,然后求出只有∠DCE=30°時EC平分∠DCH,判斷出②錯誤;
③點H與點A重合時,設(shè)BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,點G與點D重合時,CF=CD,求出BF=4,然后寫出BF的取值范圍,判斷出③正確;
④過點F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判斷出④正確.
解答 解:①∵FH與CG,EH與CF都是矩形ABCD的對邊AD、BC的一部分,
∴FH∥CG,EH∥CF,
∴四邊形CFHE是平行四邊形,
由翻折的性質(zhì)得,CF=FH,
∴四邊形CFHE是菱形,
故①正確;
②∴∠BCH=∠ECH,
∴只有∠DCE=30°時EC平分∠DCH,
故②錯誤;
③點H與點A重合時,設(shè)BF=x,則AF=FC=8-x,
在Rt△ABF中,AB2+BF2=AF2,
即42+x2=(8-x)2,
解得x=3,
點G與點D重合時,CF=CD=4,
∴BF=4,
∴線段BF的取值范圍為3≤BF≤4,
故③正確;
過點F作FM⊥AD于M,
則ME=(8-3)-3=2,
由勾股定理得,
EF=$\sqrt{M{F}^{2}+M{E}^{2}}$=2$\sqrt{5}$,
故④正確;
綜上所述,結(jié)論正確的有①③④共3個.
故選:C.
點評 此題是四邊形綜合題,主要考查了折疊問題與菱形的判定與性質(zhì)、勾股定理的綜合應(yīng)用,熟練掌握菱形的判定定理和性質(zhì)定理、勾股定理是解本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
a | 1 | 2 | 3 | $\frac{1}{2}$ |
d | 1 | $\frac{1}{2}$ | $\frac{1}{3}$ | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com